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Answer any FIVE FULL Questions MARKS CO RBT 

1  Design a Turing Machine for L={anbncn|n≥1}. Write the transition function and 

transition diagram for the same. 

[10] CO5 L3 

2  Explain the Multi tape Turing Machine and Non-deterministic Turing Machine 

with neat block diagram. 

 

[10] CO4 L1  

 

3 State and prove pumping lemma for Context Free Language(CFL). Show that 

L= {anbncn|n≥1} is not context free. 

[10] CO4 L1 

&L3 

4 Write down the closure properties of CFL. Prove that the family of CFL’s are 

closed under union, concatenation and star closure. 

[10] CO4 L2 

5  Write Short notes on: 

(a) Post correspondence problem 

(b) Halting problem of TM 

[2*5] CO5 L1 

6 Define a Turing machine. Explain the working of a basic TM with a neat diagram. 

Also define the language accepted by TM. 

[10] CO4 L1 

7 Design a TM for L={w| w is a palindrome and w Ɛ {a,b}*}. Write the transition 

function for the constructed TM and write the sequence of ID’s for the input 

string w=baab . 

[10] CO5 L3 

8 Design a TM to perform subtraction of two integers. Write the transition function 

and transition diagram for the same. 

[10] CO5 L3 

9 Define Chomsky Normal Form (CNF). Convert the following CFG to CNF. 

S→ABC | BaB 

A→aA|BaC|aaa 

B→bBb|a|D 

C→CA|AC 

D→ϵ 

[10] CO4 L3 

10 Define Greibach Normal Form(GNF). Convert the following CFG to GNF. 

S→aAa|bBb|ϵ 

[10] CO4 L3 



A→C|a 

B→C|b 

C→CDE|ϵ 

D→A|B|ab 

 

 

Q.1. Design a Turing Machine for L={anbncn|n≥1}. Write the transition function and 

transition diagram for the same.                                                                   [5+5] 

Ans: 

The transition function is given below. 

δ(q0,a)=(q1,x,R) 

δ(q1,a)=(q1,a,R) 

δ(q1,y)=(q1,y,R) 

δ(q1,b)=(q2,y,R) 

δ(q2,b)=(q2,b,R) 

δ(q2,z)=(q2,z,R) 

δ(q2,c)=(q3,z,L) 

δ(q3,a)=(q3,a,L) 

δ(q3,b)=(q3,b,L) 

δ(q3,y)=(q3,y,L) 

δ(q3,z)=(q3,z,L) 

δ(q3,x)=(q0,x,R) 

δ(q0,y)=(q4,y,R) 

 

δ(q4,y)=( q4,y,R) 

δ(q4,z)=(q5,z,R) 



δ(q5,z)=(q5,z,R) 

δ(q5,B)=(q6,B,R) 

 

Note: Draw the transition diagram according to the above transition function. 

Q.2. Explain the Multi tape Turing Machine and Non-deterministic Turing Machine with 

neat block diagram.                                                                                            [5+5] 

 

Ans: 

VARIANTS OF TURING MACHINE: 

There are two new models of Turing machines: 

1. MULTITAPE TURING MACHINE 

2. NON-DETERMINISTIC TURING MACHINE 

 

MULTITAPE TURING MACHINE 
Multi-tape Turing Machines have multiple tapes where each tape is accessed 

with a separate head. Each head can move independently of the other heads. 

Initially the input is on tape 1 and others are blank. At first, the first tape is 

occupied by the input and the other tapes are kept blank. Next, the machine 

reads consecutive symbols under its heads and the TM prints a symbol on 

each tape and moves its heads. 
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Finite Control 
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A Multi-tape Turing machine can be formally described as a 7-tuple (Q,Σ,Г, 

B, δ, q0, F) where − 

• Q is a finite set of states 

• Σ is a finite set of inputs 

• Г is the tape alphabet 

• B is the blank symbol 

• δ is a relation on states and symbols where 

δ: Q × Гk → Q × (Г× {Left, Right, Stationary})k 

where there is k number of tapes 

• q0 is the initial state 

• F is the set of final states 

In each move the machine M: 

(i) Enters a new state 

(ii) A new symbol is written in the cell under the head on each tape 

(iii) Each tape head moves either to the left or right or remains 

stationary.  

 

NON-DETERMINISTIC TURING MACHINE 

In a Non-Deterministic Turing Machine, for every state and symbol, there are a group of 

actions the TM can have. So, here the transitions are not deterministic. The computation of a 

non-deterministic Turing Machine is a tree of configurations that can be reached from the start 

configuration. 

An input is accepted if there is at least one node of the tree which is an accept 

configuration, otherwise it is not accepted. If all branches of the computational tree halt on all 

inputs, the non-deterministic Turing Machine is called a Decider and if for some input, all 

branches are rejected, the input is also rejected. 



A non-deterministic Turing machine can be formally defined as a 7-tuple (Q, ∑,Г, δ, q0, B, F) 

where − 

• Q is a finite set of states 

• Г is the tape alphabet 

• ∑ is the input alphabet 

• δ is a transition function; 

δ : Q × Г → 2(Q × Г × {Left, Right}) 

• q0 is the initial state 

• B is the blank symbol 

• F is the set of final states 

Q.3. State and prove pumping lemma for Context Free Language (CFL). Show that 

L= {anbncn|n≥1} is not context free.                                                           [5+5] 

 

Ans: 

If L is a context-free language, there is a pumping length p such that any string w ∈ L of length ≥ p can be 

written as w = uvxyz, where vy ≠ ε, |vxy| ≤ p, and for all i ≥ 0, uvixyiz ∈ L. 

Let L is context free. Then, L must satisfy pumping lemma. 

At first, choose a number n of the pumping lemma. Then, take z as anbncn. 

Break z into uvwxy, where 

|vwx| ≤ n and vx ≠ ε. 

Hence vwx cannot involve both as and cs, since the last a and the first c are at least (n+1) 

positions apart. There are two cases − 

Case 1 − vwx has no cs. Then vx has only as and bs. Then uwy, which would have to be in L, 

has n cs, but fewer than n as or bs. 

Case 2 − vwx has no as. 

Here contradiction occurs. 

Hence, L is not a context-free language. 

 



 Q.4. Write down the closure properties of CFL. Prove that the family of CFL’s are closed 

under union, concatenation and star closure.                                                                     [10] 

Ans:  

Context-free languages are closed under − 

• Union 

• Concatenation 

• Kleene Star operation 

Union 

Let L1 and L2 be two context free languages. Then L1 ∪ L2 is also context free. 

Example 

Let L1 = { anbn , n > 0}. Corresponding grammar G1 will have P: S1 → aAb|ab 

Let L2 = { cmdm , m ≥ 0}. Corresponding grammar G2 will have P: S2 → cBb| ε 

Union of L1 and L2, L = L1 ∪ L2 = { anbn } ∪ { cmdm } 

The corresponding grammar G will have the additional production S → S1 | S2 

Concatenation 

If L1 and L2 are context free languages, then L1L2 is also context free. 

Example 

Union of the languages L1 and L2, L = L1L2 = { anbncmdm } 

The corresponding grammar G will have the additional production S → S1 S2 

Kleene Star 

If L is a context free language, then L* is also context free. 

Example 

Let L = { anbn , n ≥ 0}. Corresponding grammar G will have P: S → aAb| ε 

Kleene Star L1 = { anbn }* 



The corresponding grammar G1 will have additional productions S1 → SS1 | ε 

Context-free languages are not closed under − 

• Intersection − If L1 and L2 are context free languages, then L1 ∩ L2 is not necessarily 

context free. 

• Intersection with Regular Language − If L1 is a regular language and L2 is a context 

free language, then L1 ∩ L2 is a context free language. 

• Complement − If L1 is a context free language, then L1’ may not be context free. 

 

Q.5. (a) Post Correspondence Problem:  

The Post Correspondence Problem (PCP), introduced by Emil Post in 1946, is an undecidable 

decision problem. The PCP problem over an alphabet ∑ is stated as follows − 

Given the following two lists, M and N of non-empty strings over ∑ − 

M = (x1, x2, x3,………, xn) 

N = (y1, y2, y3,………, yn) 

We can say that there is a Post Correspondence Solution, if for some i1,i2,………… ik, where 1 ≤ 

ij ≤ n, the condition xi1 …….xik = yi1 …….yik satisfies. 

Example 1 

Find whether the lists 

M = (abb, aa, aaa) and N = (bba, aaa, aa) 

have a Post Correspondence Solution? 

Solution 

 x1 x2 x3 

M Abb aa aaa 

N Bba aaa aa 

Here, 

x2x1x3 = ‘aaabbaaa’ 



and y2y1y3 = ‘aaabbaaa’ 

We can see that 

x2x1x3 = y2y1y3 

Hence, the solution is i = 2, j = 1, and k = 3. 

Example 2 

Find whether the lists M = (ab, bab, bbaaa) and N = (a, ba, bab) have a Post Correspondence 

Solution? 

Solution 

 x1 x2 x3 

M ab bab bbaaa 

N a ba bab 

In this case, there is no solution because − 

| x2x1x3 | ≠ | y2y1y3 | (Lengths are not same) 

Hence, it can be said that this Post Correspondence Problem is undecidable. 

 

(b) Halting Problem of TM: 

Input − A Turing machine and an input string w. 

Problem − Does the Turing machine finish computing of the string w in a finite number of 

steps? The answer must be either yes or no. 

Proof − At first, we will assume that such a Turing machine exists to solve this problem and then 

we will show it is contradicting itself. We will call this Turing machine as a Halting machine 

that produces a ‘yes’ or ‘no’ in a finite amount of time. If the halting machine finishes in a finite 

amount of time, the output comes as ‘yes’, otherwise as ‘no’. The following is the block diagram 

of a Halting machine − 



 

Now we will design an inverted halting machine (HM)’ as − 

• If H returns YES, then loop forever. 

• If H returns NO, then halt. 

The following is the block diagram of an ‘Inverted halting machine’ − 

 

Further, a machine (HM)2 which input itself is constructed as follows − 

• If (HM)2 halts on input, loop forever. 

• Else, halt. 

Here, we have got a contradiction. Hence, the halting problem is undecidable. 

 

Q.6. Define a Turing machine. Explain the working of a basic TM with a neat diagram. 

Also define the language accepted by TM.                                                                [10] 

 

Ans: A Turing Machine is an accepting device which accepts the languages (recursively 

enumerable set) generated by type 0 grammars. It was invented in 1936 by Alan Turing. 



Definition 

A Turing Machine (TM) is a mathematical model which consists of an infinite length tape 

divided into cells on which input is given. It consists of a head which reads the input tape. A 

state register stores the state of the Turing machine. After reading an input symbol, it is replaced 

with another symbol, its internal state is changed, and it moves from one cell to the right or left. 

If the TM reaches the final state, the input string is accepted, otherwise rejected. 

A TM can be formally described as a 7-tuple (Q, X, ∑, δ, q0, B, F) where − 

• Q is a finite set of states 

• X is the tape alphabet 

• ∑ is the input alphabet 

• δ is a transition function; δ : Q × X → Q × X × {Left_shift, Right_shift}. 

• q0 is the initial state 

• B is the blank symbol 

• F is the set of final states 

 
 

A TM accepts a language if it enters into a final state for any input string w. A language is 

recursively enumerable (generated by Type-0 grammar) if it is accepted by a Turing machine. 

A TM decides a language if it accepts it and enters into a rejecting state for any input not in the 

language. A language is recursive if it is decided by a Turing machine. 



There may be some cases where a TM does not stop. Such TM accepts the language, but it does 

not decide it. 

 

 


