USN

Third Internal Test -Answer Key

Sub:				Code: 15CS54						
Date:	22 / 11 / 2018 Dura		Max Marks:		Sem:	V	Branch:		ISE	
		Answer A	ANY 5 Full Que	estions				J	OB	F
					Marks	(CO R			
1 (a)	Design a PDA for the lang	guage L={a ⁿ b ⁿ	n n≥1 and n <n< td=""><td>n}. Sho</td><td>w the II</td><td>) for</td><td>[08]</td><td>C</td><td>CO2</td><td>L3</td></n<>	n}. Sho	w the II) for	[08]	C	CO2	L3
1 (a)	the input string w=aabbbb $ A = \begin{cases} (a_0, a_1, z_0) = (\\ (s(a_0, b_1, a_1) = (\\ (s(a_0, b_1$	(20, azo) (1, E) (1, E) (42, Zo) (42, Zo) (42, Zo) (43, E) (43, E) (40, abbbb, a (40, abbbb, a	/ 5 Kits b) 5 in to reach end of	all the intent at the string. (a)	w the II	O for	[08] 3 marks for Information marks for Information marks for marks	for on , 3 PDA 2	CO2	L3
		F(42,6	Accepte							
(b)	Explain why CFG is not clos	ed under Interse	ection.				[02]	C	CO2	L3
	The context-free land intersection: The proof is by counter $L_1 = \{a^m b^n c^m : n, n\}$ $L_2 = \{a^m b^n c^n : n, n\}$ Both L_1 and L_2 are of straightforward context.	interexample $n \ge 0$ /* $n \ge 0$ /* context-free	e. Let: equal a's a equal b's a	and b' and c'	s. s.		Example marks	2		
	But now consider $L = L_1 \cap L_2$ $= \{a^n b^n c^n:$	<i>n</i> ≥ 0}	n.							
2(a)	Design a PDA for the langer for the input string w=abb		" n,m≥1 and	n≠m}. S	Show th	e ID	[08] PDA 3 ma Transitio Function marks ID marks	on 3	CO3	L3

	Pumping Lemma (for CFL) is used to prove that a language is NOT Context Free	2marks		
	If A is a Context Free Language, then, A has a Pumping Length 'P' such that any string 'S', where $ S \ge P$ may be divided into 5 pieces $S = uvxyz$ such that the following conditions must be true: (1) $u v_X^i y^i z$ is in A for every $i \ge 0$	Conclusion 2 marks		
	(2) vy >0 (3) v×y ≤P			
	Show that L = { ww $w \in \{0,1\}^*$ } is NOT Context Free -> Assume that L is Context Free -> L must have a pumping length (say P) -> Now we take a string S such that $S = 0^P 1^P 0^P 1^P$ -> We divide S into parts $u \vee x \vee y = 0$			
	Case 1: vxy does not straddle a boundary Eg. $P = 5$ So, $S = 0^{5}1^{5}0^{5}1^{5}$ $ \begin{array}{ccccccccccccccccccccccccccccccccccc$			
	00000			
	Case 2a: vxy straddles the first boundary			
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
	11111 00000 11111 00000 000			
	0 ⁷ 1 ⁷ 0 ⁵ 1 ⁵ € L			
	Case 2b: vxy straddles the third boundary $\underbrace{00000 \stackrel{1}{1}1111 \stackrel{1}{1}00000 \stackrel{0}{1}11111}_{u} \stackrel{1}{1}1111111111111111111111111111111$			
	00000 1111 1000 00001111111			
	0 ⁵ 1 ⁵ 0 ⁷ 1 ⁷ & •			
	Case 3: vxy straddles the midpoint $ \underbrace{00000^{1}11111^{1}00,000^{1}11111}_{\text{U} \text{V} \text{X} \text{ Y} \text{ Z}} $ $\text{V}^{2}\text{X}\text{Y}^{2}\text{Z}$			
	000001111110000000011111			
	0517 0715			
5.		[10]	CO 4	T 1
J.	Define a Turing machine. Explain the working of a basic TM with a neat diagram. Also define the language accepted by TM.	[10]	CO4	L1
	Surger 1	Model with		
		Diagram: 4 marks,		
		Operations: 3		
		marks		
		Languages Definitions: 3		
		marks		

Turing Machine Model TURING MACHINE MODEL In one step TM does following opeartions . TM has finite control connected to a R/W (read/write) head. a new symbol to be written on the tape in the cell under the R/W · It has one tape which is divided into a number of cells. head, ii. a motion of the R/W head along the tape: either the head moves one cell left (L). or one cell right (I 81 82 83 iii. the next state of the automaton, and iv. whether to halt or not. Tape divided into cells and of infinite length a₁ a₂ a₃ Finite control Fig. 9.1 Turing machine model. Fig. 9.1 Turing machine model Formal definition of TM **Definition 9.1** A Turing machine M is a 7-tuple, namely $(Q, \Sigma, \Gamma, \delta, q_0, b, F)$, 1. Q is a finite nonempty set of states, Γ is a finite nonempty set of tape symbols, 3. $b \in \Gamma$ is the blank. 4. Σ is a nonempty set of input symbols and is a subset of Γ and $b \in \Sigma$. 5. δ is the transition function mapping (q, x) onto (q', y, D) where Ddenotes the direction of movement of R/W head: D = L or R according as the movement is to the left or right. 6. $q_0 \in Q$ is the initial state, and F ⊆ Q is the set of final states. (1) The acceptability of a string is decided by the reachability from the initial state to some final state. So the final states are also called the accepting states. (2) δ may not be defined for some elements of Q xΓ. Recursive Language (Decidable) and Recursive Enumerable language (Semi Decidable) definition required. Design TM that accepts $\{1^n 2^n 3^n \mid n \ge 1\}$. Write the ID's for 1223, 1123, [10] CO5 L3 1233 and 112233. Transition Table 3 marks: Diagram: 3 Ex 4: design a TM to accept $L=\{1^n2^n3^n : n>=1\}$ marks · Before designing the required Turing machine M, let us evolve a procedure for processing the input string 112233. After processing, we require the ID to be of the form bbbbbbq. The ID for 4 strings processing is done by using five steps: 4 marks Step 1: q1 is the initial state. The R/W head scans the leftmost 1, replaces 1 by b, and moves to the right. M enters q2. step 2: On scanning the leftmost 2, the R/W head replaces 2 by b and moves to the right. M enters q3. • Step 3 :On scanning the leftmost 3. the R/W head replaces 3 by b, and moves to the right. M enters q4. Step 4: After scanning the rightmost 3, the R/W heads moves to the left until it finds the leftmost 1. As a result, the leftmost 1, 2 and 3 are replaced by b. Step 5 :Steps 1-4 are repeated until all 1's, 2's and 3's are replaced by blanks.

	TABLE 9.6 Transition Table for Example 9.7								
	Present state		Input tap						
	→q₁ q₂	ь Rq ₂ 1.Rg ₂	2 bRq ₃ 2Rq ₃	bRa.	b bRq; bRq; bRq;				
	95 94 95 98 97	1८ व्यः 1८ व्यः	2Lq ₅	3Lq ₆	61.95 61.95 6.99				
	• Write instant $q_{1}112233 \mid bq_{2} = b1b2bq_{4}3 \mid b_{1}b_{2}bq_{4} = b_{1}bq_{4} = b_{1}b_{2}bq_{4} = b_{1}b_{2}bq_{4} = b_{1}b_{2}bq_{4} = b_{1}b_{2}bq_{4} = b_{1}b_{2}bq_{4} = b_{1}b_{2}bq_{4} = b_{1}bq_{4}bq_{4} = b_{1}bq_{4}bq_{4}bq_{4} = b_{1}bq_{4}bq_{4}bq_{4}bq_{4}bq_{4} = b_{1}bq_{4}b$	12233 — bl	q ₂ 2233	— b1bq3	233 — <i>b</i> 1				
	$\vdash q_6b1b2b$ $\vdash bbbbq_3b3$	3 bq ₁ 1b2 bbbbbq ₃	b3 — b	bbq ₂ b2b3 bbbbbq ₄ b	— bbbq₂2d — bbbbbq	b3 1 ₇ bb	5045 103		
7.	Write Short notes Deterministic TM Concept: 2 marks Diagram: 2 marks Difference b/w TM a			inded Au	omata	(b) Non	[2*5=10]	CO5	L1
8.	Design a Turing Machine for $L=\{0^n1^n n\geq 1\}$. Write the transition function for the same and also indicate the moves made by TM for input string $W=0011$.					[10]	CO4	L3	
	Ex 3: Design a TM to access of the second of	e given input string w is o ight till we encounter and move backwards. st o. If we move back an nove to a final state.	a d	q ₀ 0011	(0,0,R) $(0,0,R)$ $(0,0$	xyq_30			