USN

Internal Assesment Test - I												
Sub:	DIGITAL SYSTEM	DESIGN						Code: 17EE35				
Date:	10/09/2018	Duration:	90 mins	Max Marks:	50	Sem:	3 rd	Bran	ch:	E		
Answer For FIFTY marks								•	•			
								Marks	0	OBE		
									CO	RBT		
	1. Solve four variable Quine McCluskey minimization techniques.								10	C01	L3	
	$S=f(w, x, y, z)=\sum(1,3,13,15)+d(8,9,10,11)$											
	Simplify the Boolean expression using a 3-variable VEM, with 'd' as MEV								10	C01	L3	
-	$F(a, b, c, d) = \sum (2,9,10,11,13,14,15)$											
	Define Combinational logic.							_	10	C01	L2	
	Solve the following Boolean equation using four variable Karnaugh map and											
	implement the simplified equation using minimum number of logic gates. $A = f(x_1, x_2, y_3) = \pi (2, 2, 8, 0, 10, 11, 12, 12, 14, 15)$											
	$A=f(w, x, y, z)=\pi(2,3,8,9,10,11,12,13,14,15)$ What are Multiplexers? Implement the function using							10	CO2	L2		
	i) 8:1 multiplexer with a, b, c as select lines.								10	02	12	
	ii) 4:1 multiplexer with a, b as select lines.											
	$F=f(a, b, c, d)=\sum(0,$											
5.	What is a decoder? I	Design a key	pad inter	face to a digita	l syster	n using	10 lir	ne	10	CO2	L2	
	BCD encoder.											
6.	What is the problem	1 associated	with the	parallel adder	·? Expl	ain the	metho	od of	10	CO2	L4	
	correcting it, with su			-	. - лрп			54 01	10			

CMR

INSTITUTE OF

TECHNOLOGY

*****All the Best*****

Internal Assessment Test-I sub: Digital system Design (17EE35) solution

Q.1

, **O**

S= f (w,x,y,z) = E(1,3, 13,15) + Ed (8,9, 10,11)

				OVTPUT	step 1:	:	vorriables
INPUT					C TOUR	Minterm	
ω	×	Y	ス	ع	G. Owle	١	0001-
0	0	0	0	O	۱ ۱	8*	10000
σ	0	O	١	1	2	3	1001-
0	Ō	١	Ô	0	2	9* 10*	10 101
0	O	ι	1	١	2	10	10 11 -
0	1	O	О	0	3	13	1 1 0 1 0
0	١	0	١	ð	ঙ 4	15	
0	١	١	Ô	D	step 2:		variables w z y z
0	١	1	١	0	Group	Minterm 113	0 0 - 1
1	O	0	Ø	d	1	1, 9*	- 0 0 1
)	0	0	<u>ا</u> .	d	1	8 [*] , 9 [*] 8 [*] , 10 [*]	10-0
1	0	I	0	d	2	3,11*	_ 0 1
1	0	I	I	d	2	9, 11 * 9, 13	1 - 01
1	1	0	υ	0	2 2	104, 114	1 - 1
١	J	O	J	1	3 3	11 ⁶ ,16 13, ¹⁵	1 1 - 1
1	I	I	0	0	-		
1	I	ι	١	١			

step 3:
 Variables

 Group
 Minterms

$$W \times Y \times$$

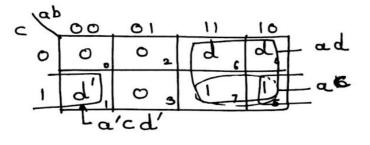
 1
 1,3,9,11
 -0
 -1

 1
 8,9,10,11
 10
 $--1$

 1
 8,9,10,11
 10
 $--1$

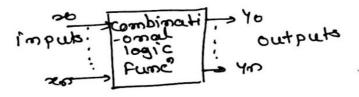
 2
 9,13,11,15
 1
 $--1$

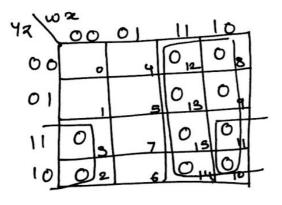
 3tep 4:
 Decimal
 Minterm₁₃
 15
 $z!z$
 $1,3,9,11$
 z
 z
 z
 wz
 $q,11,13,15$
 z
 z
 z


Q. L			2
F.f.ca,	b, c, d) = E	(2,9,10,11,13,14,15	otput
Decimal	term		
MEV	std.		D
Ø	σ	0 0 0 0 3	0
0	١	0 0 0 1	U
١	2	00102	١
L	· · ·		0
2	ع		O
2	4	0 1 0 0 2	0
3	5	0101	
3	6	50110	0
4	7	, , , , , ,	O
4			Ð
5	8	10002	1
-	٩	10013	,
5	10	10102	1
6	11	10117	
6	12	11002	σ
7	13	11017	۱.
7	١٩	11103	1

۱

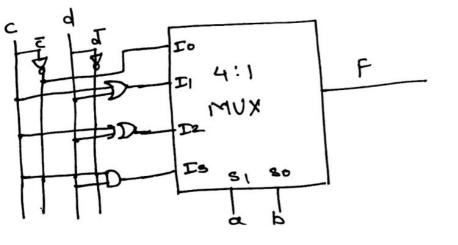
۱


9

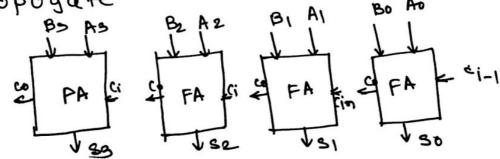

K-MAP For MEVED

= ad+ac+alcd'

Q.3 Logic circuits without feedback from output to the input (constructed from a functionally complete gate set) are said to be combinational.

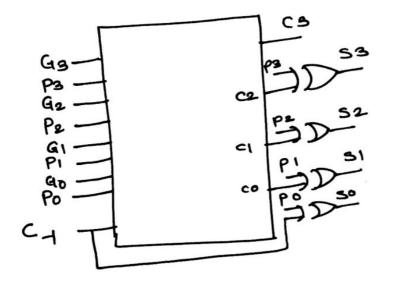


Q.4 Multiplexer select single data line from several data-input lines and the data from the selected data line would be available on the output.


The selection of a particular imput line is controlled by a set of selection lines.

Scanned with CamScanner

Q.6. In parallel adder carry output of each full-adder stage is connected to the carry imput of the next higher-order stage. The sum and carry outputs of any stage cannot be produced until the input carry occurs. This leads to a time delay in addition process. This is known as carry propogation delay.


speeding up this, by eliminating inter carry addition. stage delay is called look abead carry addition. It uses two functions: carry generate and carry propogate as A Bo Ao

Scanned with CamScanner

Truth Table for carry ci С A B Co = A·B + (A⊕B)·Cin C O 0 Ο carry carry Ο Ο 1 С pro. Gen. 0 0 1 0 Ci= Gi+ Pi Ci-1 ١ 0 1 1 1 0 0 0 L ۱ Ο 1 ۱ 1 0 ۱ - 1 1 I 1 when i=0 co= Go+ Po. C-1 -0 1=1 C1= G1+ P1. CO = GI+PICGO+POCI) -0 = GI+ PIGO+ PI. PO C-1 1=2 C2= Gm+ P2.C1 = G12+ P2 (G1+ P1. G0+ P1. PO.C-1) = G2 + P2G1 + P2. PI. Go + P2. PI PO. C1 -3 1=3 C3= G3 + P3. C2 = G3 + P3(G2+P2G1+P2.P1.G0+P2P1P0C+) = G3 + P3 G2+ P3.P2.G1+ P3.P2.P1.G0 + P3.P2.P1.P0 (-1 -0) carry out is depend on numbers and cin; so addition is speed up and delay is reduced.

Scanned with CamScanner

BBF IKS @ 1B6 BA