




## Internal Assesment Test - I

| Sub:                           | SIGNALS AND SYSTEMS Code                                                                                                                                                                                                                                        |                      |            |                                                       |                 |          | e: 15EE54 |      |          |     |     |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------|-------------------------------------------------------|-----------------|----------|-----------|------|----------|-----|-----|
| Date:                          | 08/09/2018                                                                                                                                                                                                                                                      | Duration:            | 90 mins    | Max<br>Marks:                                         | 50              | Sem:     | 5th       | Bran | nch: EEE |     |     |
| Answer Any FIVE FULL Questions |                                                                                                                                                                                                                                                                 |                      |            |                                                       |                 |          |           |      |          |     |     |
|                                |                                                                                                                                                                                                                                                                 |                      |            |                                                       |                 |          |           |      |          | OBE |     |
|                                |                                                                                                                                                                                                                                                                 |                      |            |                                                       |                 |          |           |      | Mark     | CO  | RBT |
| e                              | Define the terms Signals and Sytems. Discuss the classification of signals with examples                                                                                                                                                                        |                      |            |                                                       |                 |          |           |      |          | CO1 | L1  |
| 2                              | 1. A discrete-time signal x[n] is shown in <b>Figure P2.3.</b> $x[n]$                                                                                                                                                                                           |                      |            |                                                       |                 |          |           | 10   | CO1      | L2  |     |
|                                |                                                                                                                                                                                                                                                                 | 3 -2 -1 (            | Figure P2  | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | n               |          |           |      |          |     |     |
|                                | <ul> <li>(a) Sketch a</li> <li>i) x[n -</li> <li>ii) x[4</li> <li>iii) x[2n</li> </ul>                                                                                                                                                                          | - 2]<br>- <i>n</i> ] | label eac  | h of the follow                                       | ing sig         | nals:    |           |      |          |     |     |
| s                              | Distinguish between power and energy signals. Categorize each of the following signals as power or energy signals and find the corresponding energy or average power.  (a). $x[n] = \left(\frac{1}{4}\right)^n u[n]$ (b). $x[n] = u[n]$ (c). $x[n] = 2^n u[-n]$ |                      |            |                                                       |                 |          |           |      | 10       | CO1 | L2  |
|                                | Determine the discre $g(n) = \{1, 2, 3, 4\}$ and                                                                                                                                                                                                                |                      |            |                                                       | n seque         | nces.    |           |      | 10       | CO1 | L3  |
| (                              | Given Input output residues i)Linear (ii)Time in in $y[t]=H\{x(t)\}=\frac{-c}{2}$                                                                                                                                                                               | variant (iii)        | Causal (iv | /)Memory less                                         | and (v          | )Stable  |           | S    | 10       | CO1 | L3  |
| 6 I                            | Determine the convolution $\mathbf{x}[\mathbf{x}] = \mathbf{H}\{\mathbf{x}(\mathbf{t})\} = \frac{\alpha}{2}$<br>$\mathbf{x}[\mathbf{n}] = \alpha^{n} \mathbf{u}[\mathbf{n}] \mid \alpha \mid < 1.$                                                              | lution sum           | y[n]=x[n]  | *h[n] for x[r                                         | $[]=\beta^n u[$ | [n]  β < | 1         |      | 10       | CO1 | L3  |
|                                | Performs the following (i)x(4-t)                                                                                                                                                                                                                                | ng operation         | s on given |                                                       | i)x(-t+l        | 1)       |           |      | 10       | CO1 | L2  |

1.

A Signal is a function of a set of independent variables, with time perhaps the most prevalent single variable. A signal itself carries some kind of information available for observation. In general, a signal is a function or sequence of values that represents information.

A system is formally defined as an entity that manipulates one or more signals to accomplish a function, thereby yielding new signals.

Classification of a Signals.

- 1.2.1 Continuous-Time and Discrete-Time Signals
- 1.2.2 Even and Odd Signals.
- 1.2.3 Periodic and Non-periodic Signals.
- 1.2.4 Deterministic and Random Signals.
- 1.2.5 Energy and Power Signals.

2.

(i) 
$$\chi[m-2]$$
 shifted & places to the right (delay)

(ii)  $\chi[m-2]$  shifted & places to the right (delay)

(iii)  $\chi[4-n] = \chi[-m+4]$  advancing and reflection  $\chi[-m+4]$ 
 $\chi[-m+4]$ 
 $\chi[-m]$  time scaling - comparison

$$E = \frac{\omega}{N} (\frac{1}{2})^{n} u(n)$$

$$= \frac{1}{N} u(n)$$

$$= \frac{1}{N}$$

ion: Let 
$$y(t) = T\{x(t)\} = \frac{dx(t)}{dt}$$

(i) Linearity: 
$$T\{ax_1(t) + bx_2(t)\} = \frac{dx(t)}{dt}$$

$$= a \frac{dx_1(t)}{dt} + b \frac{dx_2(t)}{dt}$$

$$= a T\{x_1(t)\} + b T\{x_2(t)\}$$

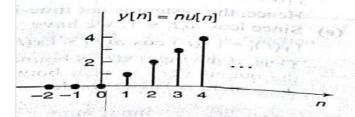
$$\therefore \text{ System is linear}$$

(ii) Time-invariance: 
$$T\{x(t-t_o)\} = \frac{d}{dt}x(t-t_o)$$
  

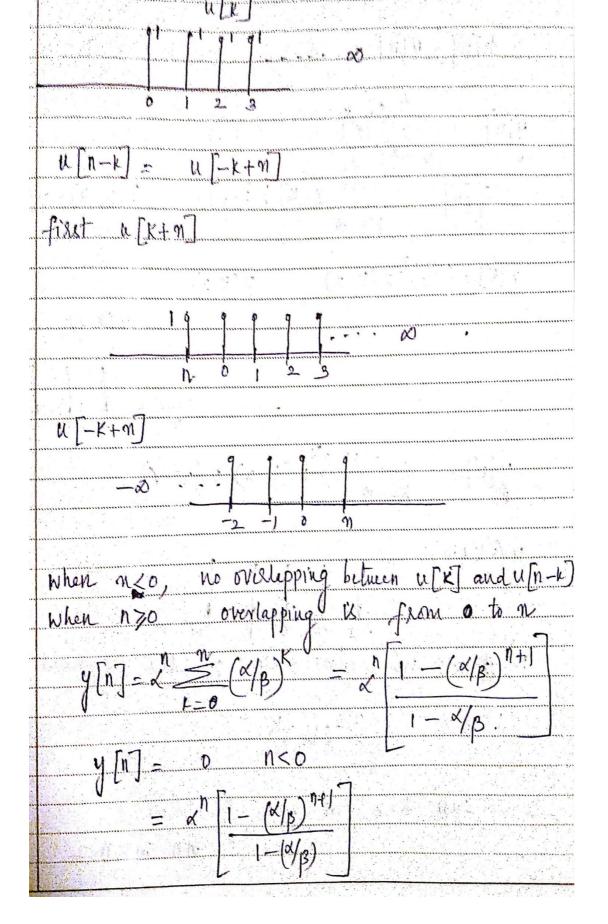
$$y(t-t_o) = \frac{d}{dt}x(t-t_o)$$

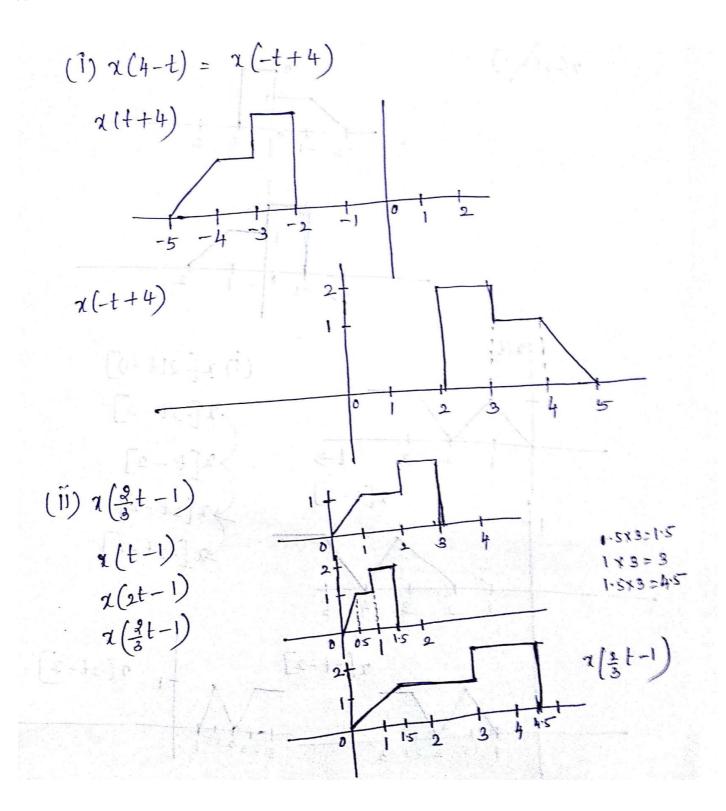
$$\therefore y(t-t_o) = T\{x(t-t_o)\}$$

- : System is time-invariant
- (iii) Memory: Differentiator has memory.
- (iv) Causal: The output does not depend on the future values of the input. So causal.
- . System is non-linear Stability: If  $|x(t)| \leq B_x$ , (v) (п) Тиме-пузганее: then  $|y(t)| = \left| \frac{dx(t)}{dt} \right| \nleq B_y$ 
  - : system is unstable.


- (a) Since the output value at n depends  $o_n$  only the input value at n, the system  $i_8$  memoryless.
- (b) Since the output does not depend on the future input values, the system is causal.
- (c) Let  $x[n] = \alpha_1 x_1[n] + \alpha_2 x_2[n]$ . Then  $y[n] = \mathbf{T}\{x[n]\} = n\{\alpha_1 x_1[n] + \alpha_2 x_2[n]\}$   $= \alpha_1 n x_1[n] + \alpha_2 n x_2[n]$   $= \alpha_1 y_1[n] + \alpha_2 y_2[n]$

Thus, the superposition property (1.68) is satisfied and the system is linear.


(d) Let  $y_1[n]$  be the response to  $x_1[n] = x[n-n_0]$ . Then


 $y_1[n] = T\{x[n - n_0]\} = nx[n - n_0]$ But  $y[n - n_0] = (n - n_0)x[n - n_0] \neq y_1[n]$ 

Hence, the system is not time-invariant. (e) Let x[n] = u[n]. Then y[n] = nu[n]. Thus, the bounded unit step sequence produces an output sequence that grows without bound. (Fig. 1.38) and the system is not BIBO stable.



6.



