CMR INSTITUTE OF TECHNOLOGY | | | | | | | 1 1 | | |---|-------------------------|-----|-----|-----|-----|-----|---| | | | 1 | | 1 | 1 | 1 1 | | | 000000000000000000000000000000000000000 | 1 | 1 1 | 1 1 | 1 | 1 | 1 1 | | | TONT | 1 1 | 1 1 | 1 1 | | - 1 | 1 | 1 | | 1.51 | 1 | 1 | . 1 | 1 1 | | | 1 | | COL | | 1 1 | | 1 | | | | | | diameter and the second | | | | | | | Internal Assesment Test - II | | | | Interna | l Assesment Te | st - 11 | and control of the second seco | | 1.01 | 700 | | |--------------------------------|---------------------------------|----------------|-------------|------------------|----------|--|--------|-------|-----|-----| | Sub: | Electric Circuit Analysis Code: | | | | | | | | | | | Date: | 15/10/2018 | Duration: | | | 50 | Sem: 3 | Branc | h: EE | EA | | | Answer Any FIVE FULL Questions | Marks | OBI | RBT | | | | | | | | 8 U | | | | | | 1 Us | se superposition | theorem to | find Ix of | the network sl | nown ir | n figl. | | [10] | CO3 | L4 | | | 2017 | × 5A | 22~ | 2 Fx | | | | | | | | | | | Fig1. | | | | | | | 1.4 | | 2 F | ind current I usin | g Norton's th | eorem sho | own in fig2. | | | | [10] | CO3 | L4 | | 47 | 6 | | G a | | | | | | | | | • | IA (| 317 | X 5 2 ~~ | 222 | 15 | 2 | | | | | | | | | 2n
Fig | 2 | | | | 0 | | | | 10 | | | | | | | | | | | | 3 F | Find Thevenin's e | equivalent cir | cuit across | s the terminal A | A-B of t | he network sh | own in | [10] | CO3 | L4 | | | 0.01 | V ₁ | Fic | 20n 100 | V | o A
VI
= B | | 5 | | | Page - 1 | 4 | Verify Reciprocity theorem for the circuit shown in fig4. | [10] | CO3 | L3 | |-----------|--|------|--|--| | 4 | Verity Reciprocity theorem for the circuit shown in fig4. | [10] | | | | | 50/30 (N) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ | | | | | | Fig 4. | | | | | 5a | Show that resonant frequency is the geometric mean of two half power frequencies of a series resonant circuit. | [4] | . CO4 | L3 | | | a series resonant circuit. | | | | | 5b | A RLC series circuit has R=1Ω, L=100mH, C=10μF. If a voltage of 100V is applied | [6] | CO2 | Ĺ3 | | | across the circuit, determine resonant frequency, Q-factor, half power frequencies. | | | TO SHEET THE SHEET | | | | | | And a | | | | | THE REAL PROPERTY AND ADDRESS OF THE ADDRESS OF THE PROPERTY AND ADDRESS OF THE PROPERTY ADDRESS OF THE PROPERTY AND ADDRESS OF THE PROPERTY ADDR | Maria 11 (100) | | 6 | Derive the expression for parallel resonance when RL is parallel to RC. Also show | [10] | CO2 | L3 | | | that the circuit will resonate at all frequencies if $R_L = R_C = \sqrt{(L/C)}$. | | | disconnection and the state of | | | Determine R_L and R_C that causes the circuit to be resonating at all frequencies shown in fig6. | | | | | 12
(N) | | 10 | 9 | | | | RL 5mH | - | | | | | | | | | | | | % 84 | | 44 | | | Re 20MF | | | | | | | 7 | | A CONTRACTOR OF THE | | | Fig 6. | | | | | | | | | | | | | | | The state of s | | | | | | | | | | • | | The state of s | | | |] | | |