CMR INSTITUTE OF TECHNOLOGY ## Internal Assesment Test - II | Sub: | ANALOG ELECTRONIC CIRCUITS Code | | | | | | e: | 17EE34 | | | | | |-------|--|--|---------------------------------------|--------------------------------|-----------------|----------------------------|-----------------|--------|---------|-----|---------------|--| | Date: | 16/10/2018 | Duration: | 90 mins | Max Marks: | 50 | Sem: | 3 rd | Bran | ch: EEE | | | | | | | | Answe | r For FIFTY m | arks | | • | | • | | | | | | | | | | | | | | Mark | S | OBE
CO RBT | | | 1a. | Explain the DC analysis of collector feedback bias configuration. | | | | | | | | 5 | CO2 | L2 | | | 1b. | For Fig(a), find Q-po
V _{BE} =0.7V | oint. Take V _c | c = 10V, | $R_c = 1 \text{ k}\Omega, R_E$ | = 0.5 k | $ \alpha\Omega, \beta = $ | 50 an | d | 5 | CO2 | L3 | | | | Fig(a) | | | Fig(b) | | | | | | | | | | | Explain the operation diagram and wavefor | | stor as a | U \ / | the he | lp of n | eat ci | rcuit | 6 | CO3 | L2 | | | 2b. | For the circuit shown in figure(b), calculate the value of R_B that saturates the transistor when $V_i = 5V$, Given that $R_c = 1$ k Ω , $\beta = 100$, $V_{cc} = 5V$, $V_{CE(SAT)} = 0.2V$ | | | | | | | 4 | CO3 | L3 | | | | 3a. | For fixed bias circuit, derive expressions for S_{ICO} and S_{VBE} . | | | | | | | 4 | CO2 | L2 | | | | 3b. | For the voltage divider bias circuit, $R_c = 1 \text{ k}\Omega$, $R_E = 470\Omega$, $R_1 = 10 \text{ k}\Omega$, $R_2 = 5 \text{ k}\Omega$, $R_1 = 100$. Determine the stability factor $R_1 = 100$. | | | | | | | 6 | CO2 | L3 | | | | 4. | Draw the circuit of common emitter amplifier with volatage divider biasing. Derive the expression for current gain, voltage gain, input and output impedance using model. | | | | | | 10 | CO2 | L2 | | | | | 5. | For the emitter follows: For the emitter follows: For the emitter follows: Z_i (c) Z_0 (d) Z_i (example 2) Z_i (f) Z | d) A _v (e) A _i R _B Nome | 220kΩ
220kΩ
⇒ Zi R _E | β= 100, r ₀ = ∞ | ρ
ο Vο
το | | - A-1 | for a | 10 | CO2 | L3 | | | | Explain hybrid equiver
transistor in CE and | | for trans | sistor. Develo | p h-pari | meter n | nodel | tor a | 10 | CO2 | L2 | |