CMR INSTITUTE OF TECHNOLOGY USN

Internal Assesment Test - II

Answers

1.Given $x(t) = e^{-2t} u(t)$; $h(t) = u(t+2)$ (i)

Let
$$
y(t) = x(t) * h(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau
$$

Fig. 4.5a shows $x(t)$ and $h(t)$.

Fig. 4.5b shows $x(\tau)$ and $h(-\tau)$ as functions of τ . The function $h(-\tau)$ can be obtained by folding the signal $h(\tau)$ about $\tau = 0$. Fig. 4.5c shows the signal: $h(t - \tau)$ and $x(\tau)$ on the same axis. Here the signal $h(t - \tau)$ is sketched for $t < -2$ by shifting $h(-\tau)$ to left. For $t < -2$, $x(\tau)$ and $h(t - \tau)$ does not overlap and the product $x(\tau)$ $h(t - \tau) = 0$, that is

win. 4.5b shows $x(z)$ and h (c) and the functions of x in The function in $x \in \mathbb{R}$ and

$y(t) = 0$ for $t < -2$

Now increase the time shift t until the signal $h(t - \tau)$ intersects $x(\tau)$. Fig 4.5d shows the situation for $t > -2$. Here $x(\tau)$ and $h(t - \tau)$ overlapped. But $x(\tau) = 0$ for $\tau < 0$ and $h(t - \tau) = 0$ for $\tau > t + 2$. Therefore t from $\tau = 0$ to $\tau = t + 2$

$$
y(t) = \int_{0}^{t+2} x(\tau)h(t-\tau)d\tau
$$
\n
$$
= \int_{0}^{t+2} e^{-2\tau}d\tau
$$
\n
$$
= \frac{1}{2}e^{-2\tau}\Big|_{0}^{t+2}
$$
\n
$$
= \frac{-1}{2}e^{-2\tau}\Big|_{0}^{t+2}
$$
\n
$$
= \frac{-1}{2}\Big[e^{-2(t+2)} - 1\Big]
$$
\n
$$
= \frac{1 - e^{-2(t+2)}}{2}
$$
\nfor $t > -2$

 $h(t) = e^{-2|t|}$

- (i) System is not memoryless, because $h(t)$ is not of the form $h(t) = c \delta(t)$. evident in Fig. Ex.2.13.
- (ii) Since, $h(t)$ is not zero for $t < 0$, the system under investigation is noncausal
- iii) Let

Then,

$$
S = \int_{-\infty}^{\infty} |h(t)| dt
$$

$$
S = \int_{-\infty}^{0} e^{2t} dt + \int_{0}^{\infty} e^{-2t} dt = \frac{1}{2} + \frac{1}{2} = 1
$$

Since S is finite, the system is BIBO stable.

(a) Direct form I (b) Direct form II Fig. P4.9.1

4.

1. Characteristic equation

$$
\lambda^{n} - 1.5\lambda^{n-1} + 0.5\lambda^{n-2} = 0
$$

$$
\lambda^{n-2}[\lambda^{2} - 1.5\lambda + 0.5] = 0
$$

- 2. Root are $\lambda_1 = 1$ and $\lambda_2 = 0.5$
- 3. Zero-input response or natural response is given by

$$
y^{(n)}[n] = c_1 \lambda_1^n + c_2 \lambda_2
$$

$$
= c_1[1]^n + c_2[0.5]^n
$$

Substituting for $n = 0$ and $n = 1$, we get

$$
y[0] = c_1 + c_2
$$

$$
y[1] = c_1 + c_2 \times 0.5
$$

Coefficients c_1 and c_2 are solved considering zero input in the original difference and in difference equation.

 $y[n] = 1.5y[n-1] - 0.5y[n-2]; \quad y[-1] = 1; \quad y[-2] = 0$ $y[0]=1.5y[-1]-0.5y[-2]$ $= 1.5 \times 1 - 0.5 \times 0 = 1.5$ $y[1]=1.5y[0]-0.5y[-1]$ $= 1.5 \times 1.5 - 0.5 \times 1 = 1.75$

Substitutung 101 31-1 $c_1+c_2=1.5\,$ $c_1 + 0.5c_2 = 1.75$ Solving we get $c_1 = 2$ and $c_2 = -0.5$ The natural response is $y^{(n)}[n] = 2[1]^n - 0.5[0.5]^n, \ n \ge 0$ 4. The particular solution is taken to be of the same form as input, $x[n] = 2^n u[n]$ $y^{(p)}[n] = k2^n u[n]$ $y^{(p)}[n-1] = k 2^{n-1} u[n-1]$ $y^{(p)}[n-2] = k 2^{n-2} u[n-2]$ 5. $y^{(p)}[n]$ is a solution of the original difference equation. Therefore, $y^{(p)}[n] - 1.5y^{(p)}[n-1] + 0.5y^{(p)}[n-2] = x[n]$ Substituting for $y^{(p)}[n]$, $k 2^n u[n] - 1.5 k 2^{n-1} u[n-1] + 0.5 k 2^{n-2} u[n-2] = 2^n u[n] \label{eq:2nd}$ k is calculated so that no term vanishes. Choose $n = 2$. $k2^2$ – 1.5 $k2^1$ + 0.5 $k2^0$ = 2² $k=\frac{8}{3}$ $y^{(p)}[n] = \frac{8}{3}[2]^n u[n].$ 6. Forced response is sum of particular solution and a component of the same form as natural response. $...(4.53)$ $y^{(f)}[n] = \frac{8}{3}[2]^n + c_3[1]^n + c_4[0.5]^n; \quad n \ge 0$

 $y[0] = \frac{8}{3}[2]^0 + c_3[1]^0 + c_4[0.5]^0$ $=\frac{8}{3}+c_3+c_4$ $y[1] = \frac{8}{3} [2]^1 + c_3[1]^1 + c_4[0.5]^1$ $=\frac{16}{3} + c_3 + 0.5c_4$

We now compute $y[0]$ and $y[1]$ from the original difference equation with zero initial conditions.

Hence,

 $y[n] = 1.5y[n-1] - 0.5y[n-2] + x[n];$ $y[0] = 1.5y[-1] - 0.5y[-2] + 2^0u[0]$ $y[0] = 1$

$$
y[1] = 1.5y[0] - 0.5y[-1] + x[1]
$$

= 1.5 × 1 - 0.5 × 0 + 2¹ = 3.5

Substituting for $y[0]$ and $y[1]$, we get

$$
\frac{8}{3} + c_3 + c_4 = 1
$$

$$
\frac{16}{3} + c_3 + 0.5c_4 = 3.5
$$

Solving, we get $c_3 = -2$ and $c_4 = \frac{1}{3}$

The forced response is $y^{(f)}[n] = -2[1]^n + \frac{1}{3}[0.5]^n + \frac{8}{3}2^n; n \ge 0$

Summarizing.

 $u^{(n)}[n] = \{2 - 0.5[0.5]^n\}u[n]$

$$
y^{(f)}[n] = \left\{-2 + \frac{1}{3}[0.5]^n + \frac{8}{3}2^n\right\}u[n]
$$

$$
y[n] = y^{(n)}[n] + y^{(f)}[n] = \left\{-\frac{1}{6}[0.5]^n + \frac{8}{3}2^n\right\}u[n].
$$

5.

- The ROC is a ring or disk in the z-plane centered at the origin. 1.
- The ROC cannot contain any poles. 2.
- If $x(n)$ is a causal sequence then the ROC is the entire z-plane except at $z = 0$. 3.

 $y[-1] = 0$ $y[-2] = 0$ $x[n] = 2^n u[n]$

If $x(n)$ is a anti-causal sequence then the ROC is the enitre z-plane except at 4. $z = \infty$.

- If $x(n)$ is a finite duration, two-sided sequence the ROC is entire z-plane except 5. at $z = 0$ and $z = \infty$.
- If $x(n)$ is an infinite duration, two-sided sequence the ROC will consist of a ring 6. in the z-plane, bounded on the interior and exterior by a pole, not containing any poles.
- The ROC of an LT1 stable system contains the unit circle (to be discussed in 7. section (10.9). In the commod the comment and part and pole-zero le(0.01) subsets
- The ROC must be a connected region. 8.

6.

 $\int_{\text{find}}^{\infty} X(z)$ Or

$$
x[n] = a^n \cos(\Omega n) u[n]
$$

solution: Let $y[n] = a^n u[n]$.

From property of multiplication by an exponential $a''y[n] \longleftrightarrow Y(\alpha^{-1}z)$; $ROC: |d|$ Ry

$$
\cos (\Omega n) = \frac{e^{j\Omega n} + e^{-j\Omega n}}{2}
$$

\n
$$
a^{n}u[n] \longleftrightarrow \frac{z}{z-1} = \frac{1}{1 - az^{-1}}; |z| > |a|
$$

\n
$$
\frac{1}{2} \{e^{i\Omega n} + e^{-j\Omega n}\}a^{n}u[n] \longleftrightarrow \frac{1}{2} \{\frac{1}{1 - az^{-1}e^{-j\Omega}} + \frac{1}{1 - az^{-1}e^{j\Omega}}\}
$$

\n
$$
= \frac{1}{2} \{\frac{1 - az^{-1}e^{j\Omega} + 1 - az^{-1}e^{-j\Omega}}{(1 - az^{-1}e^{-j\Omega})(1 - az^{-1}e^{j\Omega})}\}
$$

\n
$$
= \frac{1 - az^{-1}\left(\frac{e^{j\Omega} + e^{-j\Omega}}{2}\right)}{1 - az^{-1}(e^{-j\Omega} + e^{j\Omega}) + a^{2}z^{-2}}
$$

\n
$$
= \frac{1 - az^{-1} \cos (\Omega)}{1 - 2az^{-1} \cos (\Omega) + a^{2}z^{-2}}
$$

\n
$$
= \frac{z^{2} - az \cos (\Omega) + a^{2}z^{-2}}{1 - \frac{z^{2} - az \cos (\Omega)}{1 - \frac{z^{2}}{2}}; |z| > |a|
$$

Specifically if $a = 1$ and $\Omega = \pi/2$, we get

$$
\cos\left(\frac{\pi}{2}n\right)u[n] \longleftrightarrow \frac{z^2}{z^2+1} \qquad \qquad \dots (8.36)
$$

 ~ 1

Similarly, we can show that

$$
a^n \sin(\Omega n) u[n] \longleftrightarrow \frac{a \sin(\Omega)z}{1 - 2a \cos(\Omega)z^{-1} + a^2z^{-2}}
$$

If
$$
a = 1
$$
 and $\Omega = \frac{\pi}{2}$

$$
\sin\left(\frac{\pi}{2}n\right)u[n] \longleftrightarrow \frac{z^{-1}}{1+z^{-2}} = \frac{z}{z^2+1}
$$
...(8.37)

Solution: Write $x[n] = y[n] * w[n]$ Compute $Y(z)$

$$
u[n] \longleftrightarrow \frac{z}{z-1} \; ; \; |z| > 1
$$
\n
$$
\left(-\frac{1}{2}\right)^n u[n] \longleftrightarrow \frac{z}{z+\frac{1}{2}} \; ; \; \text{ROC: } |z| > \frac{1}{2}
$$

$$
n\left(-\frac{1}{2}\right)^n u[n] \longleftrightarrow -z\frac{d}{dz}\left(\frac{z}{z+\frac{1}{2}}\right) = \frac{-\frac{1}{2}z}{\left(z+\frac{1}{2}\right)^2}; |z| > 1/2
$$

Compute $W(z)$

 \mathbb{R}^{m_1} , \mathbb{N}_1 , \mathbb{N}_2 , \mathbb{N}_3

$$
u[n] \longleftrightarrow \frac{z}{z-1}; \quad \text{ROC: } |z| > 1
$$
\n
$$
u[-n] \longleftrightarrow \frac{1}{1-z}; \quad \text{ROC: } |z^{-1}| > 1 \text{ or } |z| < 1
$$
\n
$$
\left(\frac{3}{4}\right)^n u[-n] \longleftrightarrow \frac{1}{1-z} = \frac{1}{\sqrt{3}/4}; \quad \text{ROC: } |z| < \frac{3}{4}
$$
\n
$$
X(z) = Y(z) \quad W(z) \quad \text{(convolution property)}
$$
\n
$$
= -\frac{1}{2} \frac{z}{\left(z+\frac{1}{2}\right)^2} \times \frac{1}{1-\frac{4}{3}z}; \quad \text{ROC: } \frac{1}{2} < |z| < \frac{3}{4}
$$
\n
$$
= -\frac{1}{2} \left\{\frac{z}{\left(z+\frac{1}{2}\right)^2 \left(1-\frac{4}{3}z\right)}\right\}; \frac{1}{2} < |z| < \frac{3}{4}
$$

 $7.$ **Distributive**

Proof: Let the RHS be equal to a function $y(t)$. $y(t) = x_1(t) * x_2(t) + x_1(t) * x_3(t).$...(3.14) We now substitute the integral representation of convolution in (3.14) to get,

$$
y(t) = \int_{-\infty}^{\infty} x_1(\tau) x_2(t - \tau) d\tau + \int_{-\infty}^{\infty} x_1(\tau) x_3(t - \tau) d\tau
$$

=
$$
\int_{-\infty}^{\infty} x_1(\tau) \{x_2(t - \tau) + x_3(t - \tau)\} d\tau
$$

=
$$
x_1(t) * \{x_2(t) + x_3(t)\}
$$

Time shifting

$$
x_1(t) * x_2(t) = y(t)
$$

$$
x_1(t) * x_2(t - T) = y(t - T)
$$

$$
x_1(t) * x_2(t - T) = \int_{-\infty}^{\infty} x_1(\tau) x_2(t - T - \tau) d\tau
$$

= $y(t - T)$

$$
x_1(t - T_1) * x_2(t - T_2) = y(t - T_1 - T_2)
$$

$$
x_1(t - T_1) * x_2(t - T_2) = y(t - T_1 - T_2)
$$