CMR INSTITUTE OF TECHNOLOGY

TIONI					
USN					
CDI					

Internal Assesment Test - III

Sub:	Power System Analy	sis II						Code	e: 15EE71			
Date:	22/10/2018	Duration:	90 mins	Max Marks:	50	Sem:	7	Bran	ch:	EE	ΈE	
		A	nswer An	y FIVE FULL (Question	S						
,									OBE			
									Marl	KS	CO RBT	
	Explain the Milne's equations.	predictor co	orrector m	ethod of solvi	ng trans	ient sta	bility		[10]	CO6	L3
	A 50 Hz synchronous generator having inertia constant H=5.2 MJ/MVA and xd'=0.3 pu is connected to an infinite bus through a double circuit line as shown in fig.The reactance of the connecting HT transformer is 0.2pu and reactance of each line is 0.4 pu. lEgl =1.2 pu and lVl =1.0 pu and Pe =0.8 pu. Plot the swing curve using point by point method if a 3 phase fault occurs at the middle of one of the transmission lines and is cleared by isolating the faulted line.]	CO6	L2		
3	Solve the question n	o 2 by Eule	r's method	d					[10]	CO6	L3
	Illustrate clearly the Kutta method for tra	-		solving swing	equation	on usin	g Rur	nge_	[10]	CO6	L3
	Given that the increase dF1/dP1=0.008 P ₁ +8 dF2/dP2=0.0096 P ₂ +8 dF2/dP2=0.0096 P ₂ +1 Determine the expension of the man 100 MW respective determine the saviral load of 900 MW control of 90	Rs/MWh -6.4 Rs/MW conomic op aximum and ely .The der ag in fuel co	Th eration solution is minimum and is 90 st in Rs /h	schedule and m loading on a 00 MW and loar for econom	each uni osses are ic distrib	t is 625 negligoution o	MW wible. And the	and Also	[10		CO3	L3

Derive the expressions for loss coefficients and transmission loss in terms of generation in an interconnected system.

[10] CO3 L2

Calculate the loss coefficients in pu and MW^{-1} on a base of 50 MVA for the network given in the fig. Corresponding data is given below

Ia=1.2-j0.4pu	Za=0.02+j0.08pu
Ib=0.4-j0.2pu	Zb=0.08+j0.32pu
Ic=0.8-j0.1pu	Zc=0.02+j0.08pu
Id=0.8-j0.2pu	Zd=0.03+j0.12pu
Ie=1.2-i0.3pu	Ze=0.03+i0.12pu

Solutions

1

milnes Predictor corrector method

$$\frac{dx}{dt} = f_x(x,y,b) \left| \frac{dy}{dt} = f_y(x,y,b) \right|$$
with the known down consecutive previous values

$$\frac{d}{dt} = \frac{x}{n-3} + \frac{y}{3} \left[2x^2 - 2 - x^2 - y + 2x^2 - y \right]$$

$$\frac{d}{dt} = \frac{x}{n-3} + \frac{y}{3} \left[2y^2 - 2 - y^2 - y + 2y^2 - y^2 \right]$$

$$\frac{d}{dt} = \frac{y}{n-3} + \frac{y}{3} \left[2y^2 - 2 - y^2 - y + 2y^2 - y^2 \right]$$

$$\frac{d}{dt} = \frac{y}{n-3} + \frac{y}{3} \left[2y^2 - 2 - y^2 - y + 2y^2 - y^2 \right]$$

$$\frac{d}{dt} = \frac{y}{n-3} + \frac{y}{3} \left[2y^2 - 2 - y^2 - y + 2y^2 - y^2 \right]$$

$$\frac{d}{dt} = \frac{y}{n-3} + \frac{y}{3} \left[2y^2 - 2 - y^2 - y + 2y^2 - y^2 \right]$$

$$\frac{d}{dt} = \frac{y}{n-3} + \frac{y}{3} \left[2y^2 - 2 - y^2 - y + 2y^2 - y^2 \right]$$

$$\frac{d}{dt} = \frac{y}{n-3} + \frac{y}{3} \left[2y^2 - 2 - y^2 - y + 2y^2 - y^2 \right]$$

$$\frac{d}{dt} = \frac{y}{n-3} + \frac{y}{3} \left[2y^2 - 2 - y^2 - y + 2y^2 - y^2 \right]$$

$$\frac{d}{dt} = \frac{y}{n-3} + \frac{y}{3} \left[2y^2 - 2 - y^2 - y + 2y^2 - y^2 \right]$$

$$\frac{d}{dt} = \frac{y}{n-3} + \frac{y}{3} \left[2y^2 - 2 - y^2 - y + 2y^2 - y^2 \right]$$

$$\frac{d}{dt} = \frac{y}{n-3} + \frac{y}{3} \left[2y^2 - 2 - y^2 - y + 2y^2 - y^2 \right]$$

$$\frac{d}{dt} = \frac{y}{n-3} + \frac{y}{3} \left[2y^2 - 2 - y^2 - y + 2y^2 - y^2 \right]$$

$$\frac{d}{dt} = \frac{y}{n-3} + \frac{y}{3} \left[2y^2 - 2 - y^2 - y + 2y^2 - y^2 \right]$$

$$\frac{d}{dt} = \frac{y}{n-3} + \frac{y}{3} \left[2y^2 - 2 - y^2 - y + 2y^2 - y^2 \right]$$

$$\frac{d}{dt} = \frac{y}{n-3} + \frac{y}{3} \left[2y^2 - 2 - y^2 - y + 2y^2 - y^2 \right]$$

$$\frac{d}{dt} = \frac{y}{n-3} + \frac{y}{3} \left[2y^2 - 2 - y^2 - y + 2y^2 - y^2 \right]$$

$$\frac{d}{dt} = \frac{y}{n-3} + \frac{y}{3} \left[2y^2 - 2 - y^2 - y + 2y^2 - y^2 - y^2 - y^2 - y^2 \right]$$

$$\frac{d}{dt} = \frac{y}{n-3} + \frac{y}{3} \left[2y^2 - 2 - y^2 - y + 2y^2 - y^2 - y^2$$

```
Sy = 43.33 COH = 118.48
                                                                                                                                                             esi = 0.8 - 0.6350 28.87 = 911.43
                                                                                                                                                        10.508 34.08 = 50.000.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.00 = 50.
     SE = 8, + 4 st [2/2 + -8/6 + 2/6"] = 28-87 + 4x.05 [2 x9038-123-86
(05 = 46-18+ 44-05 [2x203-04-725-528+2x+1975]
 ws = 08-1-3335 Sin 4846 =-3427
```

$$\begin{array}{l}
\omega_{5} = \omega_{3} + \frac{Dt}{3} \left[\omega_{3}^{2} + \omega_{4} \omega_{4}^{2} + \omega_{5}^{2} \right] \\
= 123.86 + 0.05 \left[-125.688 + 41.4 + 42.79 + -34.2 + 7 \right] = -34.2383 \\
= 116.98 \\
8_{5}^{1} = \omega_{5}^{2} = 116.98 \\
\omega_{5}^{2} = -8 - 1.333 \sin 48.52 = -344.30 \\
\omega_{5}^{2} = -8 - 1.333 \sin 48.52 = -344.30
\end{array}$$


```
33
      Faul closed in 2.5 cycles
               2.5 cycles => .05 sec
        Pa (05) => 0.8 - 0.63 500 2899 = 0.8 - 0.3053 = 0.4947
        Pa (-05) => 0.8 - 1.33 Sin 28.99 = 0.8 - 0.6446 = 0.1551
        Pa= 0.32505
      Deg = . 32505 x . 05 = 23.16
       co, = 23.42+28.16= 51.5872
     08, = 51.5872×05 = 2.5794
      S1 = 23-42 28-99+2-5794= 31-5694
   t=01
          Pa: 0.8-1.33 Sin 31.5694 = 0.8-0.69787 = 0.10213
         PM 7 = . 10 513 X . 02 : 8 . 8 2008
        €2= 51.5872+8.85008= 60.4373
                                                         123
      D82 = GO 10373 X 05 = 3.02186
                                                          -15
        82 = 34.5912 = 31.56944 3.02186
                                                          508
   continue ->
  Fault cleaned on 6.25 cycles => 0.125 sec
  t=0.05 & t=0.1 Dane as Sustained Soull
            Pa = 0.8 - 1.333 Sin 3763 = 0.8 - . 810 = -0.010
  t=0.15
take angle
            DOS = - 010 X.05 = - 88302
            CD = 106 4390 - . 88302
                = 105 SHT!
            37.62+5277 = 42.8978/ = this is at t=0.2
         8= 105-547 X-05 - 5-277
```

3

```
1= So + (0,+0,P) of el w, = wo+(02+P2P) of.
     8-12 = 10,0 + o2 - 27-8
   es = evo + 02 0+ = 4652
 Dip = cup = 46.52
 02 P= 08-063 54278 = 930 47
g = 31.8 + [0+ MESS] 2002 = 52.8
 8-m1 = 0+ (930-117+ 930-119-05 = 46.25
 0, =4652
 D2 = 0.8 - 0.63 2in 28 9 = 910.90
   = 28.9 +46.52 x.05 = 31.226
cop = 4652+910 9x05 = 921065
DIP = 92 065, 02P= 018-063 5W31226 = 870-2178
81 = 28.9 -1 [HEES + 92.065] 3.05 = 32.36
After 15 10 fall is cleared then Power 1:333
```

Runga Kulto mothod

$$\frac{dx}{dt} = f_3(x_1y_1, b)$$
Shorting with xo, y_2 to co. y_1 shepsize y_1 .

$$x_1 = x_0 + \frac{1}{6} \left(K_1 + 2 K_2 + 2 K_3 + K_3 \right)$$

$$y_1 = y_0 + \frac{1}{6} \left(K_1 + 2 K_2 + 2 K_3 + K_3 \right)$$

$$y_1 = y_0 + \frac{1}{6} \left(K_1 + 2 K_2 + 2 K_3 + K_3 \right)$$

$$y_1 = y_0 + \frac{1}{6} \left(K_1 + 2 K_2 + 2 K_3 + K_3 \right)$$

$$y_1 = y_0 + \frac{1}{6} \left(K_1 + 2 K_2 + 2 K_3 + K_3 \right)$$

$$y_2 = f_3(x_0 + K_1, y_0 + \frac{1}{2}, z_0 + \frac{1}{2}, z_0 + \frac{1}{2})$$

$$y_3 = f_3(x_0 + K_1, y_0 + \frac{1}{2}, z_0 + \frac{1}{2}, z_0 + \frac{1}{2})$$

$$y_4 = f_3(x_0 + K_1, y_0 + \frac{1}{2}, z_0 + \frac{1}{2}, z_0 + \frac{1}{2})$$

$$y_4 = f_3(x_0 + K_1, y_0 + \frac{1}{2}, z_0 + \frac{1}{2}, z_0 + \frac{1}{2})$$

$$y_4 = f_3(x_0 + K_2, y_0 + \frac{1}{2}, z_0 + \frac{1}{2}, z_0 + \frac{1}{2})$$

$$y_4 = f_3(x_0 + K_2, y_0 + \frac{1}{2}, z_0 + \frac{1}{2}, z_0 + \frac{1}{2})$$

$$y_4 = f_3(x_0 + K_2, y_0 + \frac{1}{2}, z_0 + \frac{1}{2}, z_0 + \frac{1}{2})$$

$$y_4 = f_3(x_0 + K_2, y_0 + \frac{1}{2}, z_0 + \frac{1}{2}, z_0 + \frac{1}{2})$$

$$y_4 = f_3(x_0 + K_2, y_0 + \frac{1}{2}, z_0 + \frac{1}{2}, z_0 + \frac{1}{2}, z_0 + \frac{1}{2})$$

$$y_4 = f_3(x_0 + K_2, y_0 + \frac{1}{2}, z_0 + \frac{1}{2}, z_0$$

$$K_{4} = (\omega_{0} + \frac{1}{2}) \text{ ob}$$

$$K_{5} = \delta_{0} + \frac{1}{6} \left[K_{1} + 2K_{2} + 2K_{3} + K_{4} \right]$$

$$Same Problem$$

$$K_{1} = \omega_{0} + \frac{1}{6} \left[K_{1} + 2k_{2} + 2k_{3} + k_{4} \right]$$

$$K_{2} = \omega_{0} + \frac{1}{6} \left[K_{1} + 2k_{2} + 2k_{3} + k_{4} \right]$$

$$K_{3} = (\omega_{1} + \frac{1}{6} + \frac{1}{$$

$$K_{1} = 16.18 + \frac{1}{16.18} + \frac{1}{16.18} = 2.309$$

$$K_{2} = (16.18 + \frac{1}{16.55} + \frac{1}{16.55}) \cdot 05 = 8.4475$$

$$K_{3} = 16.18 + \frac{1}{16.55} \cdot 05 = 8.4475$$

$$K_{4} = (16.18 + \frac{1}{16.55} + \frac{1}{16.55}) \cdot 05 = 8.4475$$

$$K_{5} = 16.18 + \frac{1}{16.55} \cdot 05 = 16.5112$$

$$K_{5} = 16.18 + \frac{1}{16.55} \cdot 05 = 16.5112$$

$$K_{5} = 16.18 + \frac{1}{16.55} \cdot 05 = 16.5112$$

$$K_{5} = 16.18 + \frac{1}{16.55} \cdot 05 = 16.5112$$

$$K_{5} = 16.18 + \frac{1}{16.55} \cdot 05 = 16.5112$$

$$K_{5} = 16.18 + \frac{1}{16.55} \cdot 05 = 16.5112$$

$$K_{5} = 16.18 + \frac{1}{16.55} \cdot 05 = 16.5112$$

$$K_{5} = 16.18 + \frac{1}{16.55} \cdot 05 = 16.5112$$

$$K_{5} = 16.18 + \frac{1}{16.55} \cdot 05 = 16.5112$$

$$K_{5} = 16.18 + \frac{1}{16.55} \cdot 05 = 16.5112$$

$$K_{5} = 16.18 + \frac{1}{16.55} \cdot 05 = 16.5112$$

$$K_{5} = 16.18 + \frac{1}{16.55} \cdot 05 = 16.5112$$

$$K_{5} = 16.18 + \frac{1}{16.55} \cdot 05 = 16.5112$$

$$K_{5} = 16.18 + \frac{1}{16.55} \cdot 05 = 16.5112$$

$$K_{5} = 16.18 + \frac{1}{16.55} \cdot 05 = 16.5112$$

$$K_{5} = 16.18 + \frac{1}{16.55} \cdot 05 = 16.5112$$

$$K_{5} = 16.18 + \frac{1}{16.55} \cdot 05 = 16.5112$$

$$K_{5} = 16.18 + \frac{1}{16.55} \cdot 05 = 16.5112$$

$$K_{5} = 16.18 + \frac{1}{16.55} \cdot 05 = 16.5112$$

$$K_{5} = 16.18 + \frac{1}{16.55} \cdot 05 = 16.5112$$

$$K_{5} = 16.18 + \frac{1}{16.55} \cdot 05 = 16.5112$$

$$K_{5} = 16.18 + \frac{1}{16.55} \cdot 05 = 16.5112$$

$$K_{5} = 16.18 + \frac{1}{16.55} \cdot 05 = 16.5112$$

$$K_{5} = 16.18 + \frac{1}{16.55} \cdot 05 = 16.5112$$

$$K_{5} = 16.18 + \frac{1}{16.55} \cdot 05 = 16.5112$$

$$K_{5} = 16.18 + \frac{1}{16.55} \cdot 05 = 16.5112$$

$$K_{5} = 16.18 + \frac{1}{16.55} \cdot 05 = 16.5112$$

$$K_{5} = 16.18 + \frac{1}{16.55} \cdot 05 = 16.5112$$

$$K_{5} = 16.18 + \frac{1}{16.55} \cdot 05 = 16.5112$$

$$K_{5} = 16.18 + \frac{1}{16.55} \cdot 05 = 16.5112$$

$$K_{5} = 16.18 + \frac{1}{16.55} \cdot 05 = 16.5112$$

$$K_{5} = 16.18 + \frac{1}{16.55} \cdot 05 = 16.5112$$

$$K_{5} = 16.18 + \frac{1}{16.55} \cdot 05 = 16.5112$$

$$K_{5} = 16.18 + \frac{1}{16.55} \cdot 05 = 16.5112$$

$$K_{5} = 16.18 + \frac{1}{16.55} \cdot 05 = 16.5112$$

$$K_{5} = 16.18 + \frac{1}{16.55} \cdot 05 = 16.5112$$

$$K_{5} = 16.18 + \frac{1}{16.55} \cdot 05 = 16.5112$$

$$K_{5} = 16.18 + \frac{1}{16.55} \cdot 05 = 16.5112$$

$$K_{5} = 16.18 + \frac{1}{16.55} \cdot 05 = 16.5112$$

$$K_{5} = 16.18 + \frac{1}{16.55} \cdot 05 = 16.5112$$

$$K_{5} = 16.18 + \frac{1}{16.55}$$

DERIVATION OF TRANSMISSION LOSS FORMULA

An accurate method of obtaining general loss coefficients has been presented by Kron. The method is elaborate and a simpler approach is possible by making the following assumptions:

- (i) All load currents have same phase angle with respect to a common reference
- (ii) The ratio X / R is the same for all the network branches.

15

$$B_{12} = \frac{\cos(\sigma_1 - \sigma_2)}{|V_1||V_2|\cos\phi_1\cos\phi_2} \sum_K N_{K1} N_{K2} R_K$$

$$B_{22} = \frac{1}{|V_2|^2 (\cos \phi_2)^2} \sum_K N_{K2}^2 R_K$$

The loss - coefficients are called the B - coefficients and have unit MW-1. For a general system with n plants the transmission loss is expressed as

$$P_{L} = \frac{P_{G1}^{2}}{|V_{1}|^{2} (\cos \phi_{1})^{2}} \sum_{K} N_{K1}^{2} + \dots + \frac{P_{Gn}^{2}}{|V_{n}|^{2} (\cos \phi_{n})^{2}} \sum_{K} N_{Kn}^{2} R_{K}$$

$$+ 2 \sum_{p,q=1}^{n} \frac{P_{GP} P_{Gq} \cos(\sigma_{p} - \sigma_{q})}{|V_{p}| |V_{q}| \cos \phi_{p} \cos \phi_{q}} \sum_{K} N_{KP} N_{Kq} R_{K}$$

In a compact form

$$P_{L} = \sum_{p=1}^{n} \sum_{q=1}^{n} P_{Gp} B_{Pq} P_{Gq}$$

$$\cos(\sigma_{p} - \sigma_{q}) \sum_{K} N_{KP} N_{Kq} R_{K}$$

$$B_{Pq} = \frac{\cos(\sigma_{p} - \sigma_{q})}{|V_{p}| \cos \phi_{p} \cos \phi_{q}} \sum_{K} N_{KP} N_{Kq} R_{K}$$

B - Coefficients can be treated as constants over the load cycle by computing average operating conditions, without significant loss of accuracy.

Example 8
Calculate the loss coefficients in pu and MW⁻¹ on a base of 50MVA for the nel Fig below. Corresponding data is given below.

Fig b: Generator 2 supplying the total load

$$\begin{split} N_{a2} = &0; \, N_{b2} = -0.4; \, N_{c2} = 1.0; \, N_{d2} = 0.4; \, N_{c2} = 0.6 \\ From Fig. 8.10, \, V_1 = V_{ref} \, + Z_e I_a \\ &= 1 \angle 0^0 + (1.2 - \text{j} \, 0.4) \, (0.02 + \text{j} 0.08) \\ &= 1.06 \angle 4.78^0 = 1.056 + \text{j} \, 0.088 \, \text{pu}. \\ V_2 = V_{ref} - I_b \, Z_b + I_c \, Z_c \\ &= 1.0 \, \angle 0^0 - (0.4 - \text{j} \, 0.2) \, (0.08 + \text{j} \, 0.32) + (0.8 - \text{j} \, 0.1) \, (0.02 + \text{j} \, 0.08) \\ &= 0.928 - \text{j} \, 0.05 = 0.93 \, \angle -3.10^0 \, \text{pu}. \end{split}$$

Current Phase angles

$$\sigma_1 = \text{angle of } I_1(=I_n) = \tan^{-1}\left(\frac{-0.4}{1.2}\right) = -18.43^{\circ}$$

$$\sigma_2 = \text{angle of } I_2(=I_+) = \tan^{-1}\left(\frac{-0.1}{0.8}\right) = -7.13^{\circ}$$

$$\cos(\sigma_3 - \sigma_2) = 0.98$$

Power factor angles

$$\phi_1 = 4.78^9 + 18.43 = 23.21^9; \cos \phi_1 = 0.92$$

 $\phi_2 = 7.13^9 - 3.10^9 = 4.03^9; \cos \phi_2 = 0.998$

$$B_{i1} = \frac{\sum_{K} N_{K1}^2 R_K}{\left|V_i\right|^2 \left(\cos\phi_i\right)^2} = \frac{1.0^2 \times 0.02 + 0.6^2 \times 0.08 + 0.4^2 \times 0.03 + 0.6^2 \times 0.03}{\left(1.06\right)^2 \left(0.920\right)^2}$$

= 0.0677 pu
= 0.0677 x
$$\frac{1}{50}$$
 = 0.1354×10⁻² MW⁻¹

$$B_{12} = \frac{Cos(\sigma_1 - \sigma_2)}{|V_1||V_2||\cos\phi_1||\cos\phi_2|} \sum_{\kappa} N_{\kappa 1} N_{\kappa 2} R_{\kappa}$$

Given that the incremental cost of 2 plant units are $\frac{dF1/dP1=0.008 P_1+8 \text{ Rs/MWh}}{dF2/dP2=0.0096 P_2+6.4 \text{ Rs/MWh}}$ Determine the economic operation schedule and corresponding cost of generation if the maximum and minimum loading on each unit is 625 MW and 100 MW respectively. The demand is 900 MW and losses are negligible. Also determine the saving in fuel cost in Rs hr for economic distribution of the total load of 900 MW compared with equal distribution between the 2 units. $\frac{dF}{dR} = \frac{dF_2}{dR} = \frac{dF_2}{dR}$