

1.19.
$$
F_1 = \frac{0.16x}{4\pi (6.3x)^{1/2}}
$$
 (a) $F_2 = F_1$
\n \Rightarrow (which is the solution) the product form.
\n1. $F_1 = \frac{0.16x}{4\pi (6.3x)^{1/2} + 6.3x}$
\n1. $F_2 = 3x$ and $F_1 = 3x$
\n \Rightarrow 2. $F_1 = 3x$
\n \Rightarrow 3. $F_2 = 3x$
\n \Rightarrow 4. $F_2 = 1$
\n \Rightarrow 5. $F_1 = 1$
\n \Rightarrow 6. $F_2 = 1$
\n \Rightarrow 7. $F_2 = 1$
\n \Rightarrow 8. $F_1 = 1$
\n \Rightarrow 8. $F_2 = 1$
\n \Rightarrow 8. $F_1 = 1$
\n \Rightarrow 8. $F_2 = 1$
\n \Rightarrow 8. $F_1 = 1$
\n \Rightarrow 8. $F_2 = 1$
\n \Rightarrow 8. $F_1 = 1$
\n \Rightarrow 8. $F_2 = 1$
\n \Rightarrow 8. $F_1 = 1$
\n \Rightarrow 8. $F_2 = 1$
\n \Rightarrow 8. $F_1 = 1$
\n \Rightarrow 8. $F_2 = 1$
\n \Rightarrow 8. $F_1 = 1$
\n \Rightarrow 8. $F_2 = 1$
\n \Rightarrow 8. $F_2 = 1$
\n \Rightarrow 9. $\frac{F_1}{F_2} = 1$
\n \Rightarrow 1. $F_2 = 1$
\n \Rightarrow 1. $F_1 = 1$
\n \Rightarrow 1. $F_2 = 1$
\n \Rightarrow

9)
$$
\frac{\text{Electron-} \text{field rather than } \frac{1}{2} \text{h} = \
$$

(9,0,1)
$$
\frac{1}{6}
$$
 $\frac{1}{16}$
\n1. $\frac{1}{16}$ $\frac{1}{16}$ $\frac{1}{16}$
\n2. $\frac{1}{16}$ $\frac{1}{16}$
\n3. $\frac{1}{16}$ $\frac{1}{16}$
\n4. $\frac{1}{16}$ $\frac{1}{16}$
\n5. $\frac{1}{16}$ $\frac{1}{16}$
\n6. $\frac{1}{16}$ $\frac{1}{16}$
\n7. $\frac{1}{16}$ $\frac{1}{16}$
\n8. $\frac{1}{16}$ $\frac{1}{16}$
\n9. $\frac{1}{16}$ $\frac{1}{16}$ $\frac{1}{16}$
\n10. $\frac{1}{16}$ $\frac{1}{16}$
\n11. $\frac{1}{16}$ $\frac{1}{16}$
\n12. $\frac{1}{16}$
\n13. $\frac{1}{16}$
\n14. $\frac{1}{16}$
\n15. $\frac{1}{16}$
\n16. $\frac{1}{16}$
\n17. $\frac{1}{16}$
\n18. $\frac{1}{16}$
\n19. $\frac{1}{16}$
\n10. $\frac{1}{16}$
\n11. $\frac{1}{16}$
\n12. $\frac{1}{16}$
\n13. $\frac{1}{16}$
\n14. $\frac{1}{16}$
\n15. $\frac{1}{16}$
\n16. $\frac{1}{16}$
\n17. $\frac{1}{16}$
\n18. $\frac{1}{16}$
\n19. $\frac{1}{16}$
\n10. $\frac{1}{16}$
\n11. $\frac{1}{16}$
\n12. $\frac{1}{16}$
\n13. $\frac{1$

$$
E_{\rho} = \bigoplus_{\substack{e \in \mathcal{E} \\ \text{odd } e}} \frac{\int_{-\infty}^{\infty} \frac{f_{L} \rho d e^{f}}{4 \pi \epsilon_{0} (\rho^{2} + \epsilon^{2} \mathcal{B}) f_{2}}.
$$
\n
$$
= \frac{d e^{f}}{2} = \rho \cos \theta.
$$
\n
$$
= \frac{d e_{20} \rho}{2 \sin \theta}.
$$
\n
$$
= \frac{d e_{30} \rho}{2 \sin \theta}.
$$
\n
$$
= \frac{d e_{30} \rho}{2 \sin \theta}.
$$
\n
$$
= \frac{d e_{30} \rho}{2 \sin \theta}.
$$
\n
$$
= \frac{d e_{30} \rho}{2 \sin \theta}.
$$
\n
$$
= \frac{d e_{30} \rho}{2 \sin \theta}.
$$
\n
$$
= \frac{d e_{30} \rho}{2 \sin \theta}.
$$
\n
$$
= \frac{d e_{30} \rho}{2 \sin \theta}.
$$
\n
$$
= \frac{d e_{30}}{2 \sin \theta}.
$$
\

(6) The **La** factorize We use the use the
\n6) the use of **anial**
$$
5-6
$$
 and $7-6$ and $16-6$

\nby a, $\int u \cos \theta = \frac{1}{2} \arctan \theta$, $1 \sin \theta = \frac{1}{2} \arctan \theta$

\nby a, $\int u \cos \theta = \frac{1}{2} \arctan \theta$, $\int u \sin \theta = \frac{1}{2} \arctan \theta$

\nThus, $u \sin \theta = \frac{1}{2} \arctan \theta$, $\frac{du}{du} = 0$

\nThus, $u = \frac{1}{2} \arctan \theta$, $u = \frac{1}{2} \arctan \theta$, $u = \frac{1}{2} \arctan \theta$

\nThus, $0 = \frac{1}{2} + 6$, $0 = \frac{1}{2} + 6$, $0 = \frac{1}{2} + 6$

\nThus, $0 = \frac{1}{2} + 6$, $0 = \frac{1}{2} + 6$

\nThus, $0 = \frac{1}{2} + 6$, $0 = \frac{1}{2} + 6$

\nThus, $0 = \frac{1}{2} + 6$, $0 = \frac{1}{2} + 6$

\nThus, $0 = \frac{1}{2} + 6$, $0 = \frac{1}{2} + 6$

\nThus, $0 = \frac{1}{2} \arctan \theta$, $0 = \frac{1}{2} \arctan \theta$

\nThus, $0 = \frac{1}{2} \arctan \theta$, $0 = \frac{1}{2} \arctan \theta$

\nThus, $0 = \frac{1}{2} \arctan \theta$, $0 = \frac{1}{2} \arctan \theta$

\nThus, $0 = \frac{1}{2} \arctan \theta$, $0 = \frac{1}{2} \arctan \theta$

\nThus, $0 = \frac{1}{2} \arctan \theta$, $0 = \frac$

V =
$$
(\hat{\theta}A^2 + \theta e^{-\alpha})
$$
 xN(4)
\n $y^2v = \frac{1}{\beta} \frac{\partial}{\partial t} (\hat{r}\frac{3x}{2}) + \frac{1}{\beta} \frac{3y}{2} + \frac{3y}{2}$
\n $\frac{\partial y}{\partial t} = (\hat{\alpha}A)^2 - \hat{\alpha}Be^{-\alpha})$ xN(4)
\n $\beta \frac{\partial y}{\partial t} = (\hat{\alpha}A)^2 - 4\theta e^{-\alpha}(\hat{\alpha}A)^2$
\n $\beta \frac{\partial y}{\partial t} = (\hat{\alpha}A)^2 - 4\theta e^{-\alpha}(\hat{\alpha}A)^2$
\n $\frac{\partial y}{\partial t} = (\hat{\alpha}A)^2 + \frac{1}{2}(\hat{\alpha}A)^2 + 16\theta e^{-\beta})$ xN(4)
\n $\frac{\partial y}{\partial t} = (\hat{\alpha}A)^2 + \frac{1}{2}(\hat{\alpha}A)^2 + 16\theta e^{-\beta})$ (ln4)
\n $\frac{\partial^2 y}{\partial t} = (\hat{\alpha}A)^2 + 6\theta e^{-\beta}(\hat{\alpha}A)^2$
\n $\frac{\partial^2 y}{\partial t} = (\hat{\alpha}A)^2 + 6\theta e^{-\beta}(\hat{\alpha}A)^2$
\n $\frac{\partial^2 y}{\partial t} = (\hat{\alpha}A)^2 + 6\theta e^{-\beta}(\hat{\alpha}A)^2$
\n $\frac{\partial^2 y}{\partial t} = (\hat{\alpha}A)^2 + 6\theta e^{-\beta}(\hat{\alpha}A)^2$
\n $\therefore \nabla^2 y = 16(\hat{\alpha}A)^2 + 6\theta e^{-\beta}(\hat{\alpha}A)^2$
\n $\therefore \nabla^2 (y = 16(\hat{\alpha}A)^2 + 6\theta e^{-\beta})$ xN(4)
\n $\therefore \nabla^2 (y = 16(\hat{\alpha}A)^2 + 6\theta e^{-\beta})$ xN(4)
\n $\therefore \nabla^2 (y = 16(\hat{\alpha}A)^2 + 6\theta e^{-\beta})$ xN(4)
\n $\therefore \nabla^2 (y = \frac{3}{\sqrt{2}} \cos \theta + \frac{3}{\$

ii. Universe:
$$
\rho_x = \frac{e^{-2x}}{r^2} C/m^3
$$
.
\n
$$
\theta_{\text{inc}} = \iiint_{V} g_r dv = \int_{V} \int_{\phi}^{\pi} \int_{\phi}^{\pi} \int_{\phi}^{\pi} e^{2x} sin \phi d\phi + \int_{V} \frac{d\phi}{d\phi} d\phi
$$
\n
$$
= \int_{0}^{R} \int_{0}^{R} 2 d\phi + \int_{0}^{R} \int_{0}^{R} sin \phi d\phi + \int_{0}^{R} \int_{R}^{R} 2 d\phi
$$
\n
$$
= \int_{0}^{R} \int_{0}^{R} \int_{0}^{R} \int_{0}^{R} \left[-\frac{cos \phi + b \phi}{c} \right]_{0}^{R} \left[\frac{2}{3} \int_{0}^{R} \right]
$$
\n
$$
= \frac{(b+1)^2}{4} \left[\frac{e^{-3x}}{c^2} + \frac{1}{c^2} \right]_{0}^{R} \left[\frac{2}{3} \left(\frac{a^2}{c^2} + 3 \right) \right]
$$
\n
$$
\theta_{\text{inc}} = \iiint_{V} g_r dv
$$
\n
$$
= \int_{0}^{R} \int_{0}^{R} e^{2x} dv = \int_{0}^{R} \int_{0}^{R} e^{2x} dv = \int_{0}^{R} e^{2x} dv = \int_{0}^{R} \int_{0}^{R} dx
$$
\n
$$
= \int_{0}^{R} \int_{0}^{R} \int_{0}^{R} e^{2x} dv = \int_{0}^{R} \int_{0}^{R} \int_{0}^{R} dx
$$
\n
$$
= \int_{0}^{R} \left[e^{-2x} dx \right]_{0}^{R} \left[-\frac{e^{2x}}{c^2} \right]_{0}^{R} \left[\frac{e^{2x}}{c^2} \right]_{0}^{R}
$$
\n
$$
= \int_{0}^{R} \left[\frac{e^{2x}}{c^2} \right]_{0}^{R} \left[-\frac{e^{2x}}{c^2} \right]_{0}^{R} \left[\frac{e^{2x}}{c^2} \right]
$$
\n
$$
= \int_{0}^{R} \left[e^{-2x} dx
$$