

$$
\frac{\partial V(A, F)}{\partial x} = -R_{1}(x_{1}F) - L_{0}\frac{\partial V(A, F)}{\partial t} - W_{0}R_{1}F
$$
\nwhere $\frac{\partial V(A, F)}{\partial x} = \frac{1}{2}L_{0}\frac{V(A+dx_{1}F)}{\partial x} - V_{0}R_{1}F$
\n
$$
\frac{\partial V(A, F)}{\partial x} = -G_{1}U(A+dx_{1}F) - C_{1}D_{1}K_{1}A+dx_{2}F
$$
\n
$$
\frac{\partial V(A, F)}{\partial x} = -G_{1}U(A+dx_{1}F) - C_{1}D_{1}K_{1}A+dx_{2}F
$$
\n
$$
\frac{\partial V(A, F)}{\partial x} = -G_{1}U(A+dx_{1}F) - C_{1}D_{1}K_{1}A+dx_{2}F
$$
\n
$$
\frac{\partial V(A, F)}{\partial x} = -G_{1}U_{1}A+dx_{1}A+dx_{2}F
$$
\n
$$
\frac{\partial V(A, F)}{\partial x} = -G_{1}U_{1}A+dx_{1}A+dx_{2}F
$$
\n
$$
\frac{\partial V(A, F)}{\partial x} = -G_{1}U_{1}A+dx_{2}F
$$
\n
$$
\frac{\partial V(A, F)}{\partial x} = -G_{1}U_{1}A+dx_{2}F
$$
\n
$$
\frac{\partial V(A, F)}{\partial x} = -G_{1}U_{1}A+dx_{2}F
$$
\n
$$
\frac{\partial V(A, F)}{\partial x} = -G_{1}U_{1}A+dx_{2}F
$$
\n
$$
\frac{\partial V(A, F)}{\partial x} = -G_{1}U_{1}A+dx_{2}F
$$
\n
$$
\frac{\partial V(A, F)}{\partial x} = -G_{1}U_{1}A+dx_{2}F
$$
\n
$$
\frac{\partial V(A, F)}{\partial x} = -G_{1}U_{1}A+dx_{2}F
$$
\n
$$
\frac{\partial V(A, F)}{\partial x} = -G_{1}U_{1}A+dx_{2}F
$$
\n
$$
\frac{\partial V(A, F)}{\partial x} = -G_{1}U_{1}A+dx_{2}F
$$
\n
$$
\frac{\partial V(A, F)}{\partial x} = -G_{1}U_{1}A+dx_{2
$$

Equations 6.03 A 8.10 are the final function
\nEquations in voltage from and current from.
\nline equations in voltage from and current form.
\nNow, from equations for V(x) and S(x): This
\nwe are multiply differentiating both with sides of 8-1
\nby the stability of the centraling
\nand subtracting (3.1) for a
\ncausant:
\n
$$
(8.0) \Rightarrow \frac{dV(x)}{dx} = -(R_1 \text{ is}) \Rightarrow f(x) = \frac{dI(x)}{dx}
$$
\n
$$
\frac{dV(x)}{dx} = \frac{F(x_1 \text{ is}) \Rightarrow (A_1 \text{ is}) \Rightarrow (A_2 \text{ is})}{dx}
$$
\n
$$
\frac{dV(x)}{dx} = \frac{F(x_1 \text{ is}) \Rightarrow (A_1 \text{ is}) \Rightarrow (A_2 \text{ is}) \Rightarrow (A_1 \text{ is}) \Rightarrow (A_1 \text{ is}) \Rightarrow (A_2 \text{ is}) \Rightarrow (A_1 \
$$

1m

4m

 \sim α

 \sim

 ξ_{R} : lord impedance $\sqrt{-1}$ < $\chi_{R} = \infty$ Copen Circuit hime) Z_{R} = Z_{0} $Z_R = 0$ (Short Circuit Line) (matched line) $3m$ $\Gamma = \frac{Z_R - Z_0}{2}$ $1.22 - 70$ $\int z \, \rho$ Z_{R} + Z_{D} Z_{R} +20 $\sqrt{7} = \frac{1 - \frac{2}{\pi}}{1 + \frac{2}{\pi}} = \frac{1 - 6}{1 + 0}$ (no reflection). . Mon power Hoansferred from =>Vref = - Vinc ゥ「= $\Rightarrow V_{neq}$: $V_{inc} \Rightarrow entire$ Course 6 load. sentire vallage is reflected with voltage reflects. magnitude inverse Open-Clocuit Case: When infant approaches load end, -the mag field collapses since coment à reco-these. This collapsing mag. field produces an electoric field Grom maxwell's can which is added to the 1_m increased: Que additional voltage gives vise la a bave which travels back to the sending end. in at load end : Vine + Vine -> doubted Ly voltage doubling ection Short-Circuit Case: Electric field collapses which generalies a magnetic field which is added to -1 \rightarrow $\frac{1}{2}$ \rightarrow $\frac{1}{2}$ dready excelling magnetic starthed by Cam Scanner 1_m f_{int} + f_{int} = 2 f_{int} . Ly Current Doubling Action.

3m (b) A twin wire transmission line in air has adjacent voltage maximas at 12.5 cm and [2] CO1 L3 27.5 cm. The operating frequency of the line is: (a) 300MHz (b) 1 GHz (c) 2GHz (d) 6.28GHz 1m 1m 4. A lossless transmission line with Zo=60Ω is 400 metres long. It is terminated [10] CO1 L3with a load Zl=40+j80Ω and operated at a frequency of 1 MHz. The velocity of the wave on the line is 0.8 times the velocity of light. *Using Smith chart*, find (i) the reflection coefficient (ii) the standing wave ratio (iii) input impedance.

$$
\begin{array}{ll}\n\text{(A)} & \begin{aligned}\n & x_0 &= 60 \text{ m} \\
 & x_0 &= 400 \text{ m} \\
 & x_0 &= 10 \text{ m/s} \\
 & x_0 &= 0.8 \times 3 \times 10^8 \\
 & x_0 &= 2 \text{ m} \\
 & x_0 &
$$

5. Define reflection and transmission coefficients. Derive an expression for [10] reflection coefficient and transmission coefficient in the transmission line. Also, derive the relationship between them.

1.5m

$$
V_{e} = V_{+} e^{-\gamma t} + V_{-} e^{-\gamma t}
$$
\n
$$
I_{e} = \frac{1}{z_{b}} (V_{+} e^{-\gamma t} - V_{-} e^{-\gamma t})
$$
\n
$$
= \frac{1}{z_{b}} \times \frac{V_{1}}{I_{1}} = \frac{1}{z_{b}} (V_{+} e^{-\gamma t} - V_{-} e^{-\gamma t})
$$
\n
$$
= \frac{1}{z_{b}} \times \frac{V_{-} e^{-\gamma t}}{V_{+} e^{-\gamma t}} = \frac{1}{z_{c}} \times \frac{
$$

CO1 L2

2m

$$
d\begin{vmatrix}\n\zeta_{1} & \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} \\
\frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} \\
\frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} \\
\frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} \\
\frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} \\
\frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} \\
\frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} \\
\frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} \\
\frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} \\
\frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} \\
\frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} \\
\frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} \\
\frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} \\
\frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} \\
\frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} \\
\frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} \\
\frac{\partial
$$

3m

6. Explain symmetrical Z and Y matrices for reciprocal network. [10] \vert CO2 \vert L2

In resignant of w, the impedance and admittance matrices are symmetrical and the junction medium is characterized by scalar electrical parameters je and E. for a multiport (N poste) of let the mil dent voire amplitudes Vi de 10 chosen that the total voltage $V_n = V_n^+ + V_n^- = 0$ at all posté n=1,2,...,N except the 7th port robere the fields are Egling. Similarly, if is and it are considered for oth port with $V_n = 0$ at other ports; then forme reciprocity theorem, we have: ϕ (E ix $H_1 - E_1 \times H_1$). ds = 0 - (0 Lorenti reciprocity Fr 21 foot 1 2 are interchanged for a two post m/w and the performance of the princer dentie à still the tame then we call that pl. es le reuprecal network.] de la la de la de la closed surface area the conducting wa**scanned by CamScanner**

In eqn (1), rince the Futugral over the particular conducting walls vanishes and (1) holds good for all pairs of ports, we can rewarte it ass $\sum_{n=1}^{10} \oint (f(x + 4)^2 - 4)^n \times 4 \times 10^{10}$ The enly non-zero integrals are there taken over the reference planes of the corresponding 4006 $\frac{1}{6}$. Since all Vn except Vi and Vj are paro, Est and Ej are rero on all refunce plance at the corresponding ports except to and ti saspectively. $\int_{I} (E_i \times H_j) ds = \int_{I} (E_j \times H_i) ds$ $-(3)$ $0 - \frac{9}{11} = \frac{9}{11}$ Power at reference plane i due to an input vily at planes. Now, from admittance matrix representation, $[5]: [Y][V]$ oden $P = VI$ \therefore (A) = $V_i \cdot V_i \cdot V_i = V_i \cdot V_i$ \rightarrow y_{ij} = y_{ji} (5) and z_i $\overline{z_i}$ $\overline{z_i}$ $\overline{z_i}$

Hence impedance d'admittance motives ave immetated for, a reciprocal junction

7. Explain S-matrix representation of multiport network. [10] CO2 L2
the impediance or colonitione matrix the the M-port betwork, the scattering roatsing finides a comptete description of the retwork is seen at it is it poste. is seen at it's N port.
While the wiepedance and admittance matrices While the wie pedance and could work at the relate the total voltages and environment forts, the eastering matrix relates to these
voltage weres believer on the ports to these voltage were the post. reflécted d'une conceptionnement and élecute. the for some component can be calculated using noturent analysis techniques. · Dherbie scottering pagameters can be measured disertly with a vector network analy xer. **Scanned by CamScanne** $\frac{v}{\kappa t}$ b, ith line ☎ œ ra: \circ *junetion* n far lines Consider the 17- post network shown. b, and . The incident (n) neflected amplitudes of niteronseres - at any pool are used to circuit characterize a nuissance

· que amplitudes are nomalized in such a roay that the square of any of there ractables gênes the ang fonces in that η_p forser at n^{th} post : $P_{th} = \frac{1}{a} |a_n|^2 - a_0$ hoove. reflected pour at nth part ? Pon = 1/bn/2 $76b$ only for 1st line: 2, 7 50 let Re: incident verre (vitg or current mare) at the junction due to the Is This dirides itely among the other $(a-1)$ true lines into a_1 , a_{21} . a_n . No reflectidre from posts eton since 202 $b_2 \cdot b_3 = \frac{b_0 - 0}{b_1 - 0}$ (1) by protected wave due to notematch. $-(\ell)$ \therefore be = b₁ = (St₁)(a₁) drinkly police all (9-1) to of lines are faminated in on impedance other than sell -the lines. : $b_1^2 = S_1 A_1 + S_2 A_3 + \cdots + S_{1n} A_n$ (4) I'can be any line from Ito n \therefore by = $\mathcal{S}_n a_1 + \mathcal{S}_{12} a_2 + \cdots + \mathcal{S}_{1n} a_n$ $h_2 = \frac{f_{01}a_1 + f_{22}a_2 + f_{12}a_3}{2}$ b_n : $S_n | a_1 + S_{n2} a_2 + \cdots + S_{nn} a_n$ (II) 32 0.7 $[6] - [5] [4] +$

8. Define and derive the following losses in microwave network in terms of S $CO2$ L₂ [10] parameters: (i) Insertion loss (ii) Transmission loss (iii) Return loss (iv) Reflection loss <u>B terms</u> of S-parameters Various losses 3m Ineerton bes - >. Edeally. an RF circuit etrouble Insection best to leave. in the words, It would have seen indection lose. Insection the power amplement is to $log_a \frac{P_{in}}{P_{in}} = 10 log_a \frac{|a_1|^2}{|b_1|^2}$
Mathemateally, $E = 10 log_a \frac{|a_1|^2}{P_{in}}$ $1 = 20 \log_{10} \frac{1}{1501}$. 20 $\log_{10} \frac{1}{1511}$ Transmission bes (or attenuation) = to logo Pi-Pt 2m = 10 log. $\frac{|Q_1|^2 - |b_1|^2}{|b_2|^2}$ $\frac{16 \log_{10} 1 - 16 \log_{10} 2}{5 \text{camped by CamScanne}}$ Reflection $\frac{\log x}{\log x} = 10 \log x$. $\frac{P_1^2}{P_1 - P_2} = \frac{\log x}{\log x}$ $1 - |e_1|^2$ 2m Return loss (d¹B) = loss of power in the signal valuemed/reflected by discontinuity be a nitematch). Mathematically, RL (20)= 10 log. Pi = #0 log. [4] 3m $\frac{1}{2}$ to log to $\frac{1}{16}$ = 20 log to $\frac{1}{5}$

RL is usually expressed as a negative number in dts ie. Ru = 10 log. Pr. tight RL à a large concern of potential failure Eg. A break in optical fiber can cause point. heph RL.