



## Internal Assesment Test - III

| Sub:                           | ub: Microwave and Antennas |           |         |            |    | Code: | 15EC71 |         |                  |
|--------------------------------|----------------------------|-----------|---------|------------|----|-------|--------|---------|------------------|
| Date:                          | 22/11/2018                 | Duration: | 90 mins | Max Marks: | 50 | Sem:  | 7th    | Branch: | ECE<br>(A,B,C,D) |
| Answer Any FIVE FULL Questions |                            |           |         |            |    |       |        |         |                  |

| I. Draw the polar diagram (field pattern) of a broadside array with no. of elements = 5 and spacing between the array elements = \frac{1}{2}.  \[ \begin{align*} & n = 5 & (No. of elements) \\ & \frac{1}{2} & (spacing between the array elements) \\ & \tau = \frac{1}{2} & (spacing between the array elements) \\ & \tau = \frac{1}{2} & (spacing between the array elements) \\ & \tau = \frac{1}{2} & (spacing between the array elements) \\ & \tau = \frac{1}{2} & (spacing between the array elements) \\ & \tau = \frac{1}{2} & (spacing between the array elements) \\ & \tau = \frac{1}{2} & (spacing between the array elements) \\ & \tau = \frac{1}{2} & (spacing between the array elements) \\ & \tau = \frac{1}{2} & (spacing between the array elements) \\ & \tau = \frac{1}{2} & (spacing between the array elements) \\ & \tau = \frac{1}{2} & (spacing between the array elements) \\ & \tau = \frac{1}{2} & (spacing between the array elements) \\ & \tau = \frac{1}{2} & (spacing between the array elements) \\ & \tau = \frac{1}{2} & (spacing between the array elements) \\ & \tau = \frac{1}{2} & (spacing between the array elements) \\ & \tau = \frac{1}{2} & (spacing between the array elements) \\ & \tau = \frac{1}{2} & (spacing between the array elements) \\ & \tau = \frac{1}{2} & (spacing between the array elements) \\ & \tau = \frac{1}{2} & (spacing between the array elements) \\ & \tau = \frac{1}{2} & (spacing between the array elements) \\ & \tau = \frac{1}{2} & (spacing between the array elements) \\ & \tau = \frac{1}{2} & (spacing between the array elements) \\ & \tau = \frac{1}{2} & (spacing between the array elements) \\ & \tau = \frac{1}{2} & (spacing between the array elements) \\ & \tau = \frac{1}{2} & (spacing between the array elements) \\ & \tau = \frac{1}{2} & (spacing between the array elements) \\ & \tau = \frac{1}{2} & (spacing between the array elements) \\ & \tau = \frac{1}{2} & (spacing between the array elements) \\ & \tau = \frac{1}{2} & (spacing between the array elements) \\ & \tau = \frac{1}{2} & (spacing b                                                                                                                                                                                                                                                                                                                                                   |     | RB<br>T |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------|
| Draw the polar diagram (field pattern) of a broadside array with no. of elements = 5 and spacing between the array elements = $\frac{\lambda}{2}$ . $1 = 5$ (No. of elements) $1 = \frac{\lambda}{2}$ (spacing between the array elements) $1 = \lambda$ |     |         |
| between the array elements = $\frac{\lambda}{2}$ : $n=5$ (No. of elements) $d=\frac{\lambda}{2}$ (spacing between the array elements)  Total far-field pattern of $n$ -isotropic point sources $E_t = E_0 \cdot \sin(n\eta s)_2$ $\sin(2t/2)$ For broadside array, sources have same amplitude and in-phase  - Maximum radiation occurs at 90° and 270°. $2t = \beta \cdot d \cdot \cos \theta + \delta$ $0 = \beta \cdot d \cdot \cos \theta + \delta$ $0 = \beta \cdot d \cdot \cos \theta$ $\cos \theta = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |         |
| Total far-field pattern of n-isotropic point sources $E_t = E_0 \cdot \sin(n\pi k)_2$ $= \sin(n\pi k)_2$ $= \sin(2k/2)$ - for broadside array, sources have same amplitude and in-phase - Maximum radiation occurs at 90° and 270°. $2k = k \cdot d \cdot \cos \theta + \delta$ $0 = k \cdot d \cdot \cos \theta + \delta$ $\cos \theta = 0$ $\cos \theta = 0$ $\theta = 90° \text{ and } 270°.$ [10]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |         |
| Et = Eo. $sin(n74)_2$ ) $sin(24/2)$ - For broadside array, sources have same amplitude and in-phase  - Maximum radiation occurs at 90° and 270°. $24e = \beta . d. cos 0 + \delta$ $0 = \beta . d. cos 0 + \delta$ $0 = \beta . d. cos 0$ $0 = 90° and 270°$ .  [10]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |         |
| - For broadside array, sources have same amplitude and in-phase  - Maximum radiation occurs at 90° and 270°. $210 = \beta \cdot d \cdot \cos 0 + \delta$ $0 = \beta \cdot d \cdot \cos 0$ $\cos 0 = 0$ $\cos 0 = 0$ $0 = 90^{\circ}$ and $270^{\circ}$ .  [10]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |         |
| - Maximum radiation occurs at 90° and 270°. $240 = \beta \cdot d \cdot \cos 0 + \delta$ $0 = \beta \cdot d \cdot \cos 0$ $\cos 0 = 0$ $\cos 0 = 0$ $0 = 90^{\circ}$ and $270^{\circ}$ .  [10]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |         |
| - Maximum radiation occurs at 90° and 270°. $210 = 36.000 = 36.000 = 36.000$ $0 = 36.000 = 36.000$ $0 = 90° \text{ and } 270°.$ [10]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |         |
| $0 =  z  d \cdot \cos 0$ $\cos 0 = 0$ $0 = 90^{\circ} \text{ and } 270^{\circ}$ . [10]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |         |
| $\cos \theta = 0$ $\theta = 90^{\circ} \text{ and } 270^{\circ}.$ [10]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |         |
| $0 = 90^{\circ}$ and $270^{\circ}$ . [10]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |         |
| Direction of pattern maxima occurs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CO4 | L3      |
| - Direction 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |         |
| $\sin\left(\frac{n^2 l^2}{2}\right) = \pm 1$ $\sin\left(\frac{2l^2}{2}\right) \neq 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |         |
| $\frac{n^2k}{2} = \pm \frac{(2N+1). \times}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |         |
| $2k = \pm (2N+1) \cdot \frac{\pi}{n}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |         |
| $\beta.d.\cos(\Omega_{\text{max}})_{\text{min}} + \delta = \pm(2N+1).T$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |         |
| $\cos \left( \Omega_{\text{max}} \right) \min = 1 \left[ \pm \left( 2N+1 \right) \cdot \overline{X} - \delta \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |         |
| $(0 \text{max})_{\text{min}} = \cos^{-1} \left\{ \frac{1}{\text{Bd}} \left[ \pm \frac{(2N+1) \cdot \overline{X} - 8}{n} \right] \right\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |         |

$$8 = 0; n = 5; d = \frac{\lambda}{2}; \beta = \frac{2\lambda}{\lambda}$$

$$(0_{max})_{min} = \cos^{5}\left\{\frac{1}{2x}, \frac{\lambda}{\lambda}\right\} = \frac{1}{(2N+1)} \frac{1}{5}$$

$$N = 0, \quad (0_{max})_{min} = \cos^{5}\left\{\frac{1}{15}\right\} = 78.46^{\circ}, 101.53^{\circ}$$

$$N = 1, \quad (0_{max})_{min} = \cos^{5}\left\{\frac{1}{15}\right\} = 5312^{\circ}, 126.86^{\circ}$$

$$N = 2, \quad (0_{max})_{min} = \cos^{5}\left\{\frac{1}{15}\right\} = 0^{\circ}, 180^{\circ}$$

$$- \text{Directions}\left\{\text{pattern minima occurs at}\right\}$$

$$\sin\left(\frac{n3k}{2}\right) = 0$$

$$\frac{n3k}{2} = \pm N\pi$$

$$2(c = \pm 2N\pi)$$

$$\cos\left(\frac{0_{min}}{n_{min}}\right) = \frac{1}{2\pi}\left\{\pm \frac{2N\pi}{n} - 8\right\}$$

$$\cos\left(\frac{0_{min}}{n_{min}}\right) = \cos^{5}\left\{\pm \frac{1}{2\pi}\right\} = \frac{2\pi}{n}$$

$$(0_{min})_{min} = \cos^{5}\left\{\pm \frac{1}{2\pi}\right\} = \frac{2\pi}{n}$$

$$N = 0, \quad (0_{min})_{min} = \cos^{5}\left\{\pm \frac{1}{2\pi}\right\} = \frac{36.86^{\circ}}{143.12^{\circ}}$$

$$N = 2, \quad (0_{min})_{min} = \cos^{5}\left\{\pm \frac{1}{5}\right\} = Not \text{ exists}$$

$$N = 3, \quad (0_{min})_{min} = \cos^{5}\left\{\pm \frac{1}{5}\right\} = Not \text{ exists}$$



| $45^{\circ} = 114.59^{\circ}$ $(8-1).d/\lambda)$ $45^{\circ} = 114.59^{\circ}$ $\lambda = \frac{C}{f}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |     |    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|----|
| $\frac{7d}{\lambda} = \frac{114.59^{\circ}}{45^{\circ}}$ $\lambda = \frac{3\times10^{8}}{10\times10^{6}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |     |    |
| $\frac{d}{\lambda} = \frac{114.59^{\circ}}{45^{\circ}} = 2.5464$ $d = 2.5464\lambda$ $d = 76.392 \text{ m}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |     |    |
| 3. (a) Show that the electric field pattern of a thin linear antenna of length L=λ/2 is given by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _   |     |    |
| $E = \frac{\cos(\frac{\pi}{2}\cos\theta)}{\sin\theta}$ far fields H\$\phi\$ and E\$\text{0} of a thin linear antenna, center}  fed, symmetrical, of length, L $H \Rightarrow \int [I_0] \left[\cos\left(\frac{\mu_2(\cos\theta)}{2}\right) - \cos\left(\frac{\mu_2}{2}\right)\right]$ $= \int \frac{\cos\left(\frac{\pi}{2}\cos\theta\right)}{2\pi \pi} \left[\cos\left(\frac{\pi}{2}\cos\theta\right) - \cos\left(\frac{\pi}{2}\cos\theta\right)\right] - \cos\left(\frac{\pi}{2}\cos\theta\right)$ When $L = \lambda_2$ , the electric field pattern, $H \Rightarrow \int \frac{ I_0 }{2\pi \pi} \left[\cos\left(\frac{2\pi}{\lambda} \cdot \frac{\lambda}{2} \cdot \cos\theta\right) - \cos\left(\frac{\pi}{2}\cos\theta\right)\right]$ $= \int \frac{ I_0 }{2\pi \pi} \left[\cos\left(\frac{\pi}{2}\cos\theta\right) - \cos\left(\frac{\pi}{2}\cos\theta\right)\right]$ $= \int \frac{ I_0 }{2\pi \pi} \left[\cos\left(\frac{\pi}{2}\cos\theta\right) - \cos\left(\frac{\pi}{2}\cos\theta\right)\right]$ $= \int \frac{ I_0 }{2\pi \pi} \left[\cos\left(\frac{\pi}{2}\cos\theta\right) - \cos\left(\frac{\pi}{2}\cos\theta\right)\right]$ $= \int \frac{ I_0 }{2\pi \pi} \left[\cos\left(\frac{\pi}{2}\cos\theta\right) - \cos\left(\frac{\pi}{2}\cos\theta\right)\right]$ Sine | [4] | CO5 | L4 |
| then $Eo = \frac{1}{60} \left[ \frac{10}{3} \left[ \frac{\cos \left( \frac{\pi}{2} \cos 0 \right)}{\sin 0} \right] \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |     |    |

| 4. | Derive an expression for an electric field of an array of two isotropic point sources of same amplitude and opposite phase. Also draw the field pattern and determine its maxima, minima and HPBW. |      |     |    |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|----|
|    | Array of two isotropic point sources-same Amplitude and opposite phase.  Total for field strength,                                                                                                 |      |     |    |
|    | E=-Eo.e(17%)+Eo.E(14%)                                                                                                                                                                             |      |     |    |
|    | E_= -Eo [ej4/2_ej4/2]                                                                                                                                                                              |      |     |    |
|    | Et= - Eo. [2j. sin (41/2)]                                                                                                                                                                         |      |     |    |
|    | $Et = 2j \cdot E_0 \cdot sin\left(\frac{2k}{2}\right)$                                                                                                                                             |      |     |    |
|    | - phase différence between two point sources,                                                                                                                                                      |      |     |    |
|    | 2fc = B.d. cos 0 + 8                                                                                                                                                                               |      |     |    |
|    | 7 = 2T. d. cos 0 (or) 2 (= dr. cos 0                                                                                                                                                               | [10] | CO4 | L3 |
|    | where $d = distance$ between two point $\left[ dr = \frac{2\pi}{\lambda}, d \right]$                                                                                                               |      |     |    |
|    | Pattern maxima occurs when                                                                                                                                                                         |      |     |    |
|    | $\sin\left(\frac{2\vec{k}}{2}\right) = \pm 1$                                                                                                                                                      |      |     |    |
|    | $\frac{2 C }{2} = \pm (2h + \frac{1}{2}) \cdot \frac{\pi}{2}$                                                                                                                                      |      |     |    |
|    | 2/r= ± (2n+1).x                                                                                                                                                                                    |      |     |    |
|    | $\beta.d.\cos\theta = \pm (2n+1).\pi$                                                                                                                                                              |      |     |    |
|    | $cos \theta = \frac{1}{\beta d} \left[ \pm (2n+1). \pi \right]$                                                                                                                                    |      |     |    |
|    |                                                                                                                                                                                                    |      |     |    |
|    |                                                                                                                                                                                                    |      |     |    |

Omax = 
$$\cos^{1}\left[\frac{1}{\beta}d\left(\pm 2NH\right)\pi\right]$$

$$B = \frac{2\pi}{\lambda}; d = \frac{\lambda}{2} \text{ (spacing)}$$

Omax =  $\cos^{1}\left[\frac{1}{2\pi\lambda}\frac{1}{\lambda}\right] \left(\pm 2nH\right)\pi$ 

$$Omax = \cos^{1}\left[\pm (2nH)\right]$$

$$Omax = \cos^{1}\left[\pm 1\right] = 0^{\circ}, 180^{\circ}$$

$$N = 1, \quad Omax = \cos^{1}\left[\pm 3\right] = \text{Not exists}$$

Pattern minima occurs when
$$\sin\left(\frac{2N}{2}\right) = 0$$

$$\frac{2(c)}{2} = \pm 2n\pi$$

$$2(c) = \pm 2n\pi$$

$$\cos^{1}\left(\frac{1}{2}n\pi\right) = \cos^{1}\left[\frac{1}{2}n\pi\right]$$

$$(\Theta_{min}) = +605^{-1} \left[ \pm 2n \right]$$

$$n=0, \qquad (\Theta_{min}) = \cos^{-1} \left[ 0 \right] = 90^{\circ}, 270^{\circ}$$

$$n=1, \qquad (\Theta_{min}) = \cos^{-1} \left[ \pm 2 \right] = \text{not exists}$$

$$\text{Half Power beamwidth (HPBW) occurs at}$$

$$= in \left( \frac{2f}{2} \right) = \pm \frac{1}{f^{2}}$$

$$= \frac{2f}{2} = \pm (2n+1) \cdot \frac{\pi}{4}$$

$$= 2f^{\circ} = \pm (2n+1) \cdot \frac{\pi}{4}$$

$$= 2f^{\circ} = \pm (2n+1) \cdot \frac{\pi}{4}$$

$$= \cos^{-1} \left( \frac{1}{2} \right) \cdot \frac{1}{f^{2}} \left( \frac{1}{2n+1} \cdot \frac{1}{2} \right)$$

$$= \cos^{-1} \left( \frac{1}{2} \right) \cdot \frac{1}{f^{2}} \left( \frac{1}{2n+1} \cdot \frac{1}{2} \right)$$

$$= \cos^{-1} \left( \frac{1}{2} \right) \cdot \frac{1}{f^{2}} \left( \frac{1}{2n+1} \cdot \frac{1}{2} \right)$$

$$= \cos^{-1} \left( \frac{1}{2} \right) \cdot \frac{1}{f^{2}} \left( \frac{1}{2n+1} \cdot \frac{1}{2} \right)$$

$$= \cos^{-1} \left( \frac{1}{2} \right) \cdot \frac{1}{f^{2}} \left( \frac{1}{2n+1} \cdot \frac{1}{2} \right)$$

$$= \cos^{-1} \left( \frac{1}{2} \right) \cdot \frac{1}{f^{2}} \left( \frac{1}{2n+1} \cdot \frac{1}{2} \right)$$

$$= \cos^{-1} \left( \frac{1}{2} \right) \cdot \frac{1}{f^{2}} \left( \frac{1}{2n+1} \cdot \frac{1}{2} \right)$$

$$= \cos^{-1} \left( \frac{1}{2} \right) \cdot \frac{1}{f^{2}} \left( \frac{1}{2n+1} \cdot \frac{1}{2} \right)$$

$$= \cos^{-1} \left( \frac{1}{2} \right) \cdot \frac{1}{f^{2}} \left( \frac{1}{2n+1} \cdot \frac{1}{2} \right)$$

$$= \cos^{-1} \left( \frac{1}{2} \right) \cdot \frac{1}{f^{2}} \left( \frac{1}{2n+1} \cdot \frac{1}{2} \right)$$

$$= \cos^{-1} \left( \frac{1}{2} \right) \cdot \frac{1}{f^{2}} \left( \frac{1}{2n+1} \cdot \frac{1}{2} \right)$$

$$= \cos^{-1} \left( \frac{1}{2} \right) \cdot \frac{1}{f^{2}} \left( \frac{1}{2n+1} \cdot \frac{1}{2} \right)$$

$$= \cos^{-1} \left( \frac{1}{2} \right) \cdot \frac{1}{f^{2}} \left( \frac{1}{2n+1} \cdot \frac{1}{2} \right)$$

$$= \cos^{-1} \left( \frac{1}{2} \right) \cdot \frac{1}{f^{2}} \left( \frac{1}{2n+1} \cdot \frac{1}{2} \right)$$

$$= \cos^{-1} \left( \frac{1}{2} \cdot \frac{1}{2} \right) \cdot \frac{1}{f^{2}} \left( \frac{1}{2n+1} \cdot \frac{1}{2} \right)$$

$$= \cos^{-1} \left( \frac{1}{2} \cdot \frac{1}{2} \right) \cdot \frac{1}{f^{2}} \left( \frac{1}{2n+1} \cdot \frac{1}{2} \right)$$

$$= \cos^{-1} \left( \frac{1}{2} \cdot \frac{1}{2} \right) \cdot \frac{1}{f^{2}} \left( \frac{1}{2n+1} \cdot \frac{1}{2} \right)$$

$$= \cos^{-1} \left( \frac{1}{2} \cdot \frac{1}{2} \right) \cdot \frac{1}{f^{2}} \left( \frac{1}{2n+1} \cdot \frac{1}{2} \right)$$

$$= \cos^{-1} \left( \frac{1}{2} \cdot \frac{1}{2} \right) \cdot \frac{1}{f^{2}} \left( \frac{1}{2n+1} \cdot \frac{1}{2} \right)$$

$$= \cos^{-1} \left( \frac{1}{2} \cdot \frac{1}{2} \right) \cdot \frac{1}{f^{2}} \left( \frac{1}{2n+1} \cdot \frac{1}{2} \right)$$

$$= \cos^{-1} \left( \frac{1}{2} \cdot \frac{1}{2} \right) \cdot \frac{1}{f^{2}} \left( \frac{1}{2n+1} \cdot \frac{1}{2} \right)$$

$$= \cos^{-1} \left( \frac{1}{2} \cdot \frac{1}{2} \right) \cdot \frac{1}{f^{2}} \left( \frac{1}{2n+1} \cdot \frac{1}{2} \right)$$

$$= \cos^{-1} \left( \frac{1}{2} \cdot \frac{1}{2} \right) \cdot \frac{1}{f^{2}} \left( \frac{1}{2} \cdot \frac{1}{2} \right)$$

$$= \cos^{-1} \left( \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \right)$$

$$= \cos^{-1} \left( \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \right)$$

$$= \cos^{-1} \left( \frac{1}{2} \cdot \frac{1}{$$



which implies instantaneous propagation of the effect of the current, we introduce the propagation (or retardation) time as done by Lorentz and write

$$[I] = I_0 e^{j\omega[t - (r/c)]}$$
 (2)

where [1] is called the retarded current. Specifically, the retardation time r/c results in a phase retardation  $\omega r/c = 2\pi f r/c$  radians = 360° f r/c = 360° t/T, where T = 1/f =time of one period or cycle (seconds) and f =frequency (hertz, Hz = cycles per second). The brackets may be added as in (2) to indicate explicitly that the effect of the current is retarded.

Equation (2) is a statement of the fact that the disturbance at a time t and at a distance r from a current element is caused by a current [1] that occurred at an earlier time t - r/c. The time difference r/c is the interval required for the disturbance to travel the distance r, where c is the velocity of light  $(=300 \text{ Mm s}^{-1}).$ 



Figure 6-3a Geometry for short dipps

Figure 6-3b Relations for short

Electric and magnetic fields can be expressed in terms of vector and scalar potentials. Since we will interested not only in the fields near the dipole but also at distances which are large compared to the wavelength we must use retarded potentials, i.e., expressions involving t - r/c. For a dipole located as in Fig. 6.1s Fig. 6-3a, the retarded vector potential of the electric current has only one component, namely, Az. Its will

$$A_z = \frac{\mu_0}{4\pi} \int_{-L/2}^{L/2} \frac{[I]}{s} \, dz$$

where [1] is the retarded current given by

$$[I] = I_0 e^{j\omega[t - (s/c)]}$$

In (3) and (3a),

z =distance to a point on the conductor

 $I_0$  = peak value in time of current (uniform along dipole)

 $\mu_0$  = permeability of free space =  $4\pi \times 10^{-7}$  H m<sup>-1</sup>

If the distance from the dipole is large compared to its length  $(r \gg L)$  and if the wavelength is large compared to the largeth  $(r \gg L)$ to the length  $(\lambda \gg L)$ , we can put s = r and neglect the phase differences of the field contributions for different parts of the wire. The integrand in (3) can then be regarded as a constant, so that (3) becomes

$$A_z = \frac{\mu_0 L I_0 e^{j\omega[t - (r/c)]}}{4\pi r}$$

The retarded scalar potential V of a charge distribution is

$$V = \frac{1}{4\pi\varepsilon_0} \int_V \frac{[\rho]}{s} d\tau$$

where  $[\rho]$  is the retarded charge density given by

$$[\rho] = \rho_0 e^{j\omega[t - (s/c)]}$$

$$V = \frac{1}{4\pi\varepsilon_0} \left\{ \frac{[q]}{s_1} - \frac{[q]}{s_2} \right\}$$

From (6-1-1) and (3a),

$$[q] = \int [I] dt = I_0 \int e^{j\omega[t - (s/c)]} dt = \frac{[I]}{j\omega}$$
 (8)

$$V = \frac{I_0}{4\pi\epsilon_0 j\omega} \left[ \frac{e^{j\omega[t - (s_1/c)]}}{s_1} - \frac{e^{j\omega[t - (s_2/c)]}}{s_2} \right]$$
(9)

Referring to Fig. 6–3b, when  $r \gg L$ , the lines connecting the ends of the dipole and the point P may be considered as parallel

$$L_{\cos\theta} \tag{10}$$

$$s_2 = r + \frac{L}{2}\cos\theta$$

(10) and (11) into (9), it may be shown that the fields of a short electric dipole are

[10] CO5 L3

$$E_r = \frac{I_0 L \cos \theta e^{j\omega[t - (r/c)]}}{2\pi \varepsilon_0} \left(\frac{1}{cr^2} + \frac{1}{j\omega r^3}\right) \qquad \textbf{General}$$

$$ext{of short dipole}$$

$$E_\theta = \frac{I_0 L \sin \theta e^{j\omega[t - (r/c)]}}{4\pi \varepsilon_0} \left(\frac{j\omega}{c^2 r} + \frac{1}{cr^2} + \frac{1}{j\omega r^3}\right) \qquad (13)$$

In obtaining (12) and (13) the relation was used that  $\mu_0 \varepsilon_0 = 1/c^2$ , where c = velocity of light. Turning our attention now to the *magnetic field*, this may be calculated from curl of A as follows:

$$\nabla \times \mathbf{A} = \frac{\hat{\mathbf{r}}}{r \sin \theta} \left[ \frac{\partial (\sin \theta) A_{\phi}}{\partial \theta} - \frac{\partial (A_{\theta})}{\partial \phi} \right] + \frac{\hat{\theta}}{r \sin \theta} \left[ \frac{\partial A_{r}}{\partial \phi} - \frac{\partial (r \sin \theta) A_{\phi}}{\partial r} \right] + \frac{\hat{\phi}}{r} \left[ \frac{\partial (r A_{\theta})}{\partial r} - \frac{\partial A_{r}}{\partial \theta} \right]$$
(14)

Since  $A_{\phi} = 0$ , the first and fourth terms of (14) are zero, since  $A_r$  and  $A_{\theta}$  are independent of  $\phi$ , so that the second and third terms of (14) are also zero. Thus, only the last two terms contribute, so that  $\nabla \times \mathbf{A}$ , and hence also H, have only a  $\phi$  component. Thus,

Magnetic fields 
$$|\mathbf{H}| = H_{\phi} = \frac{I_0 L \sin \theta e^{j\omega[t - (r/c)]}}{4\pi} \left(\frac{j\omega}{cr} + \frac{1}{r^2}\right)$$
 General of short dipole  $H_r = H_{\theta} = 0$ 

Thus, the fields from the dipole have only three components  $E_r$ ,  $E_\theta$  and  $H_\phi$ . The components  $E_\phi$ ,  $H_r$  are everywhere zero.

When r is very large, the terms in  $1/r^2$  and  $1/r^3$  in (12), (13), and (15) can be neglected in favore terms in 1/r. Thus, in the far field  $E_r$  is negligible, and we have effectively only two field component and  $H_{\phi}$ , given by

Electric and magnetic 
$$E_{\theta} = \frac{j\omega I_0 L \sin\theta e^{j\omega[t-(r/c)]}}{4\pi\varepsilon_0 c^2 r} = j\frac{I_0\beta L}{4\pi\varepsilon_0 cr} \sin\theta e^{j\omega[t-(r/c)]}$$
 Far-field fields of short dipole  $H_{\phi} = \frac{j\omega I_0 L \sin\theta e^{j\omega[t-(r/c)]}}{4\pi cr} = j\frac{I_0\beta L}{4\pi r} \sin\theta e^{j\omega[t-(r/c)]}$ 

Taking the ratio of  $E_{\theta}$  to  $H_{\phi}$  as given by (17) and (18), we obtain

$$\frac{E_{\theta}}{H_{\phi}} = \frac{1}{\varepsilon_0 c} = \sqrt{\frac{\mu_0}{\varepsilon_0}} = 376.7 \ \Omega$$
 Impedance of space

## 6-4 Radiation Resistance of Short Electric Dipole

Let us now calculate the radiation resistance of the short dipole of Fig. 6–1b. This may be done as for the Poynting vector of the far field is integrated over a large sphere to obtain the total power radiate power is then equated to  $I^2R$  where I is the rms current on the dipole and R is a resistance, called the resistance of the dipole.

The average Poynting vector is given by

$$S = \frac{1}{2} \operatorname{Re}(E \times H^*)$$

The far-field components are  $E_{\theta}$  and  $H_{\phi}$  so that the radial component of the Poynting vector is  $S_r = \frac{1}{2} \operatorname{Re} E_{\theta} H_{\phi}^*$ 

where  $E_{\theta}$  and  $H_{\phi}^{*}$  are complex.

The far-field components are related by the intrinsic impedance of the medium. Hence,  $E_{\theta} = H_{\phi}Z = H_{\phi}\sqrt{\frac{\mu}{\varepsilon}}$ Thus, (2) becomes  $S_{r} = \frac{1}{2}\operatorname{Re}ZH_{\phi}H_{\phi}^{*} = \frac{1}{2}|H_{\phi}|^{2}\operatorname{Re}Z = \frac{1}{2}|H_{\phi}|^{2}\sqrt{\frac{\mu}{\varepsilon}}$ (4)

The total power P radiated is then

$$P = \int \int S_r ds = \frac{1}{2} \sqrt{\frac{\mu}{\varepsilon}} \int_0^{2\pi} \int_0^{\pi} |H_{\phi}|^2 r^2 \sin\theta \, d\theta \, d\phi \tag{5}$$

where the angles are as shown in Fig. 6-2 and  $|H_{\phi}|$  is the absolute value of the magnetic field, which from (6-3-18) is

$$|H_{\phi}| = \frac{\omega I_0 L \sin \theta}{4\pi cr} \tag{6}$$

Substituting this into (5), we have

$$P = \frac{1}{32} \sqrt{\frac{\mu}{\varepsilon}} \frac{\beta^2 I_0^2 L^2}{\pi^2} \int_0^{2\pi} \int_0^{\pi} \sin^3 \theta \, d\theta \, d\phi \tag{7}$$

The double integral equals  $8\pi/3$  and (7) becomes

$$P = \sqrt{\frac{\mu}{\varepsilon}} \frac{\beta^2 I_0^2 L^2}{12\pi} \tag{8}$$

This is the average power or rate at which energy is streaming out of a sphere surrounding the dipole. Hence, it is equal to the power radiated. Assuming no losses, it is also equal to the power delivered to the dipole.

Therefore, P must be equal to the square of the rms current I flowing on the dipole times a residual called the radiation resistance of the dipole. Thus,

$$\sqrt{\frac{\mu}{\varepsilon}} \frac{\beta^2 I_0^2 L^2}{12\pi} = \left(\frac{I_0}{\sqrt{2}}\right)^2 R_r$$

Solving for  $R_r$ ,

$$R_r = \sqrt{\frac{\mu}{\varepsilon}} \frac{\beta^2 L^2}{6\pi}$$

For air or vacuum  $\sqrt{\mu/\varepsilon} = \sqrt{\mu_0/\varepsilon_0} = 377 = 120\pi\Omega$  so that (10) becomes<sup>1</sup>

Dipole with uniform current 
$$R_r = 80\pi^2 \left(\frac{L}{\lambda}\right)^2 = 80\pi^2 L_{\lambda}^2 = 790L_{\lambda}^2$$
 ( $\Omega$ ) Radiation resistance

6. Derive an expression for the far field components of a small loop antenna



[10] CO5

L3

 $E_{\phi} = \frac{60\pi [I]Ld_r \sin \theta}{}$ Figure 7–3 Construction for finding far field of dipoles 2 and 4 of square loop. However, the length L of the short dipole is the same as d, that is, L = d. Noting also that  $d_r = 2\pi d/\lambda$  and that the area A of the loop is  $d^2$ , (7) becomes

Small loop 
$$E_{\phi} = \frac{120\pi^{2}[I]\sin\theta}{r} \frac{A}{\lambda^{2}}$$
 FarE  $_{\phi}$  field

| This is the instantaneous value of the $E_{\phi}$ component of the far field of a small loop of area $A$ . The peak of the field is obtained by replacing $[I]$ by $I_0$ , where $I_0$ is the peak current in time on the loop. The obcomponent of the far field of the loop is $H_{\theta}$ , which is obtained from (8) by dividing by the intrinsic imposition of the medium, in this case, free space. Thus, $H_0 = \frac{E_{\phi}}{120\pi} = \frac{\pi[I] \sin \theta}{r} \frac{A}{\lambda^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |     |    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|----|
| 7. (a) Find the length, L, H-plane aperture and flare angles $\theta E$ and $\theta H$ of a pyramidal horn for which E-plane aperture is $10\lambda$ . Horn is fed by a rectangular waveguide with TE10 mode. Assume $\delta = 0.2\lambda$ is $E$ -plane and $0.375\lambda$ in H-plane. Also find E-plane, H-plane beam widths and directivity. $L = \frac{a^2}{8\delta} = \frac{100\lambda}{8/5} = 62.5\lambda$ $\theta_E = 2 \tan^{-1} \frac{a}{2L} = 2 \tan^{-1} \frac{10}{125} = 9.1^\circ$ Taking $\delta = 3\lambda/8$ in the $H$ plane we have from $(7-19-5)$ that the flare angle in the $H$ plane $\theta_H = 2 \cos^{-1} \frac{L}{L+\delta} = 2 \cos^{-1} \frac{62.5}{62.5+0.375} = 12.52^\circ$ and from $(7-19-5)$ that the $H$ -plane aperture $a_H = 2L \tan \frac{\theta_H}{2} = 2 \times 62.5\lambda \tan 6.26^\circ = 13.7\lambda$ From Table 7-4, $HPBW (E \text{ plane}) = \frac{56^\circ}{a_{E\lambda}} = \frac{56^\circ}{10} = 5.6^\circ$ $HPBW (H \text{ plane}) = \frac{67^\circ}{a_{H\lambda}} = \frac{67^\circ}{13.7} = 4.9^\circ$ From (3), $D \simeq 10 \log \left(\frac{7.5A_P}{\lambda^2}\right) = 10 \log(7.5 \times 10 \times 13.7) = 30.1 \text{ dBi}$ |      | CO5 | L4 |
| (b) Explain the different types of rectangular and circular horn antenna. For rectangular horn, write design equation for flare angle. $\cos\frac{\theta}{2} = \frac{L}{L+\delta}$ $\sin\frac{\theta}{2} = \frac{a}{2(L+\delta)}$ $\tan\frac{\theta}{2} = \frac{a}{2L}$ where $\theta = \text{flare angle } (\theta_E \text{ for } E \text{ plane}, \theta_H \text{ for } H \text{ plane}), \text{ deg } a = \text{aperture } (a_E \text{ for } E \text{ plane}, a_H \text{ for } H \text{ plane}), \text{ m}$ $L = \text{horn length, m}$ $\delta = \text{path length difference, m}$ From the geometry we have also that $L = \frac{a^2}{8\delta} \qquad (\delta \ll L)$ and $\theta = 2 \tan^{-1} \frac{a}{2L} = 2 \cos^{-1} \frac{L}{L+\delta}$                                                                                                                                                                                                                                                                                                                                                                                                                                     | [04] | CO5 | L2 |



| (b) Calculate the maximum effective aperture of a thin loop antenna $0.1\lambda$ in diameter with a uniform in-phase current distribution.  Relation between Directivity and Affective $D = \frac{4\pi}{\lambda^2} (Ae)$ Aperture $Ae = \frac{\lambda^2}{\lambda^2} D$ $Ae = \frac{\lambda^2}{4\pi} (3e)$ $Ae = 0.1193 \lambda^2$ | [05] | CO5 | L3 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|----|
| 3 (b) Calculate the radiation resistance of a dipole of length = $\lambda/5$ . Assume triangular current distribution.  Radiation resistance of a short dipole is $Rr = 790 \; (L/\lambda^2)$ Then taking L= $\lambda/5$ $Rr=31.6 \text{ ohms}$                                                                                   | [6]  | CO5 | L3 |