



#### III INTERNAL ASSESSMENT TEST

| Sub:  | DIGITAL SIGNAL PROCESSING |           |         |            | Code: | 15EC52 |   |         |            |
|-------|---------------------------|-----------|---------|------------|-------|--------|---|---------|------------|
| Date: | 19/ 11 / 2018             | Duration: | 90 mins | Max Marks: | 50    | Sem:   | V | Branch: | ECE(D)/TCE |

### Answer any 5 full questions

|      |                                                                                                                                                                | Marks | CO  | RBT |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|-----|
| 1    | Explain Goertzel algorithm. Obtain the direct form II realization of Goertzel filter.                                                                          | [10]  | CO3 | L2  |
| 2(a) | Given $x[n] = [2,0,2,0]$ , obtain $X[2]$ using Goertzel algorithm.                                                                                             | [04]  | CO3 | L2  |
| 2(b) | Write a note on Chirp Z transform and its applications.                                                                                                        | [06]  | CO3 | L2  |
| 3    | Derive the frequency response of Type-I and Type-III digital FIR filters. Discuss the suitability of these types for the design of digital LPF, HPF, BPF, BSF. | [10]  | CO4 | L2  |

| TICAL |  |  |  |  |  |
|-------|--|--|--|--|--|
|       |  |  |  |  |  |
| CDI   |  |  |  |  |  |
| CDI   |  |  |  |  |  |



#### III INTERNAL ASSESSMENT TEST

| Sub:  | DIGITAL SIGNAL PROCESSING |           |         |            |    |      | Code: | 15EC52  |            |
|-------|---------------------------|-----------|---------|------------|----|------|-------|---------|------------|
| Date: | 19/ 11 / 2018             | Duration: | 90 mins | Max Marks: | 50 | Sem: | V     | Branch: | ECE(D)/TCE |

#### Answer any 5 full questions

|      |                                                                                                                                                                | Marks | CO  | RBT |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|-----|
| 1    | Explain Goertzel algorithm. Obtain the direct form II realization of Goertzel filter.                                                                          | [10]  | CO3 | L2  |
| 2(a) | Given $x[n] = [2,0,2,0]$ , obtain $X[2]$ using Goertzel algorithm.                                                                                             | [04]  | CO3 | L2  |
| 2(b) | Write a note on Chirp Z transform and its applications.                                                                                                        | [06]  | CO3 | L2  |
| 3    | Derive the frequency response of Type-I and Type-III digital FIR filters. Discuss the suitability of these types for the design of digital LPF, HPF, BPF, BSF. | [10]  | CO4 | L2  |

| 4 | The desired frequency response of a filter is                                                                                                             | [10] | CO4 | L2 |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|----|
|   | $H_{d}(e^{j\omega}) = \begin{cases} e^{-j3\omega}, & -\frac{3\pi}{4} \le \omega \le \frac{3\pi}{4} \\ 0, & \frac{3\pi}{4} <  \omega  \le \pi \end{cases}$ |      |     |    |
|   | Determine the impulse response using Hamming window.                                                                                                      |      |     |    |
|   | (Hamming Window Equation : $w(n) = 0.54 - 0.46 \cos\left(\frac{2\pi n}{N-1}\right)$ , $0 \le n \le N-1$ )                                                 |      |     |    |
| 5 | Obtain a cascade realization of the system described by                                                                                                   | [10] | CO4 | L2 |
|   | $H(z) = \frac{\left(1 + \frac{1}{4}z^{-1}\right)}{\left(1 + \frac{1}{2}z^{-1}\right)\left(1 + \frac{1}{2}z^{-1} + \frac{1}{4}z^{-2}\right)}$              |      |     |    |
| 6 | Obtain the parallel realization of the system function                                                                                                    | [10] | CO4 | L2 |
|   | $H(z) = \frac{(1+z^{-1})(1+2z^{-1})}{(1+\frac{1}{2}z^{-1})(1-\frac{1}{2}z^{-1})(1+\frac{1}{8}z^{-1})}$                                                    |      |     |    |
| 7 | Obtain the direct form-I and direct form-II realizations of the following                                                                                 | [10] | CO4 | L2 |
|   | system function.                                                                                                                                          |      |     |    |
|   | $H(z) = \frac{(z-1)(z^2+5z+6)(z-3)}{(z^2+6z+5)(z^2-6z+8)}$                                                                                                |      |     |    |
|   | $(z^2 + 6z + 5)(z^2 - 6z + 8)$                                                                                                                            |      |     |    |

| 4 | The desired frequency response of a filter is                                                                                                             | [10] | CO4 | L2 |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|----|
|   | $H_{d}(e^{j\omega}) = \begin{cases} e^{-j3\omega}, & -\frac{3\pi}{4} \le \omega \le \frac{3\pi}{4} \\ 0, & \frac{3\pi}{4} <  \omega  \le \pi \end{cases}$ | . ,  |     |    |
|   | Determine the impulse response using Hamming window.                                                                                                      |      |     |    |
|   | (Hamming Window Equation : $w(n) = 0.54 - 0.46 \cos\left(\frac{2\pi n}{N-1}\right)$ , $0 \le n \le N-1$ )                                                 |      |     |    |
| 5 | Obtain a cascade realization of the system described by                                                                                                   | [10] | CO4 | L2 |
|   | $H(z) = \frac{\left(1 + \frac{1}{4}z^{-1}\right)}{\left(1 + \frac{1}{2}z^{-1}\right)\left(1 + \frac{1}{2}z^{-1} + \frac{1}{4}z^{-2}\right)}$              |      |     |    |
| 6 | Obtain the parallel realization of the system function                                                                                                    | [10] | CO4 | L2 |
|   | $H(z) = \frac{(1+z^{-1})(1+2z^{-1})}{(1+\frac{1}{2}z^{-1})(1-\frac{1}{2}z^{-1})(1+\frac{1}{8}z^{-1})}$                                                    |      |     |    |
| 7 | Obtain the direct form-I and direct form-II realizations of the following                                                                                 | [10] | CO4 | L2 |
|   | system function.                                                                                                                                          |      |     |    |
|   | $H(z) = \frac{(z-1)(z^2+5z+6)(z-3)}{(z^2+6z+5)(z^2-6z+8)}$                                                                                                |      |     |    |
|   | $II(z) - \frac{1}{(z^2 + 6z + 5)(z^2 - 6z + 8)}$                                                                                                          |      |     |    |

# Solution and Scheme of Evaluation

$$h(n) = W_N u(n)$$
 (2M)

$$y(n) = g(n) + h(n)$$

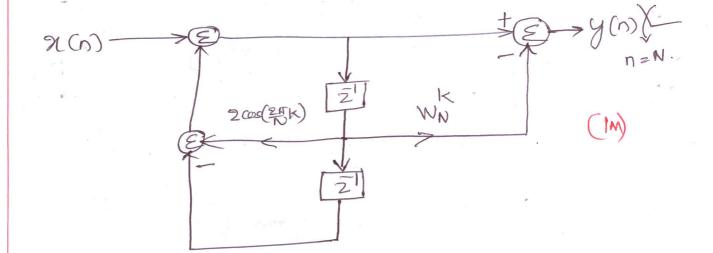
$$= \sum_{n=1}^{N-1} g(m) h(n-m)$$

$$= \sum_{n=0}^{\infty} x(n) k(n-m)$$

$$= \sum_{n=0}^{\infty} x(n) k(n-m)$$

$$= \sum_{n=0}^{\infty} x(n) k(n-m)$$

$$= \sum_{n=0}^{\infty} x(n) k(n-m)$$


$$y(n) = \sum_{m=0}^{N-1} y(m) W_N$$

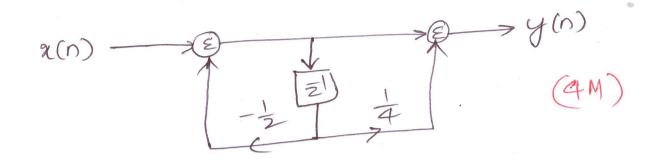
$$= \times (K)$$
.

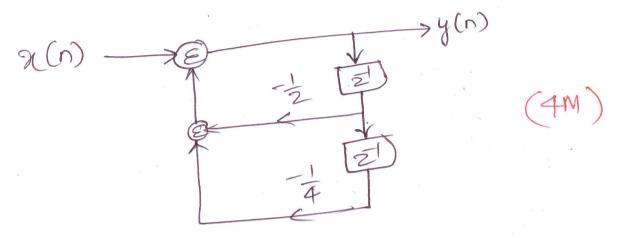
$$H(2) = \frac{1}{1 - W_N^{-k} z^{-1}}$$
 (2m)

$$y(n) = 2(n) + W_N y(n-1)$$

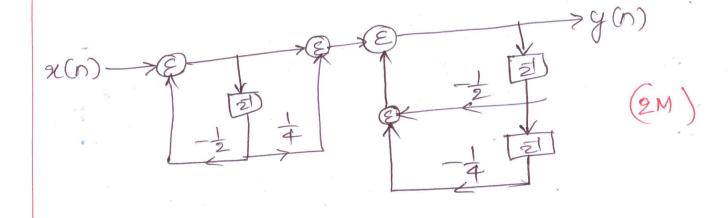
$$H(2) = \frac{1 - NN z^{1}}{1 - 2 \cos(\frac{2N}{N}k)z^{1} + z^{2}}$$
 (2M)




2a 
$$\chi(n) = (2,0,2,0)$$
  
 $k = 2$ ,  $N = 4$ ,  $W_N = e^{\frac{1}{4}} = -1$   
 $y(n) = \chi(n) + W_N y(n-1)$   
 $y(0) = \chi(0) = 2$   
 $y(1) = \chi(1) + (-1)y(0) = -2$   
 $y(2) = \chi(2) + (-1)y(1) = 2 + 2 = 4$  (4M)  
 $y(3) = \chi(3) + (-1)y(2) = (-1)(4) = -4$   
 $y(4) = \chi(4) + (-1)y(3) = 4$   
 $\chi(2k) = \sum_{n=0}^{N-1} \chi(n)(x_0e^{\frac{1}{2}})^n \times (2k)$   
 $\chi(2k) = \sum_{n=0}^{N-1} \chi(n)(x_0e^{\frac{1}{2}})^n \times (2k)$ 


H(w) = 
$$\frac{-(N+1)}{2} \left[ h(N-1) + \frac{N-3}{2} h(n) \right] \left[ h(N-1) + \frac{$$

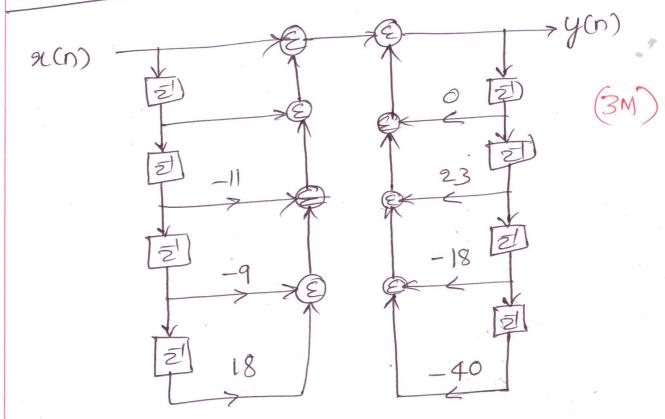
Type 3 N-odd, 
$$h(n) = antisymmetric$$
 $H(2) = 2$ 
 $\begin{bmatrix} \frac{N-3}{2} \\ \frac{N-1}{2} \\ \frac{N-3}{2} \\$ 


$$5 H_1(2) = \frac{1+\frac{1}{4}z^{\frac{1}{2}}}{1+\frac{1}{2}z^{\frac{1}{2}}}.$$

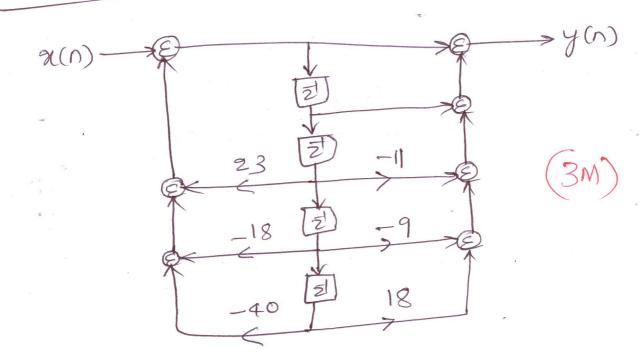
$$H_2(2) = \frac{1}{1 + \frac{1}{2}z^1 + \frac{1}{4}z^2}$$






Cascade realization




$$(6) H(2) = \frac{2}{|1+\frac{1}{2}|^2} + \frac{6}{|1+\frac{1}{3}|^2} + \frac{1}{|1+\frac{1}{3}|^2} + \frac{1}{|1+\frac{3}|^2} + \frac{1}{|1+\frac{1}{3}|^2} + \frac{1}{|1+\frac{1}{3}|^2} + \frac{1}{|1+\frac{1}$$

$$=\frac{2^{4}+2^{3}-14^{2}-92+18}{2^{4}-232^{2}+182+40}$$

$$= \frac{1+2^{1}-112^{2}-92^{3}+182^{4}}{1-232^{2}+182^{3}+402^{4}}$$



## DF-I

