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Note:   Value of Constants:    h = 6.625×10-34Js     k = 1.38×10-23 J/K   m = 9.11×10-31 kg.
e = 1.6 x 10-19C, c = 3x108 m/s

MARKS

CO RBT

1 (a) State and explain Planck’s law of black body radiation. Show that it reduces to Wien’s law and
Rayleigh-Jeans law under suitable wavelength conditions.

[07] CO1 L3

(b) Calculate wavelength of the maximum intensity (black body radiation) that could be emitted by
the normal human body, assuming temperature of the body as 38 ºC (given that Wien’s constant is
2.898x10-3 m-K).

[03] CO1 L2

2 (a) Define phase velocity and group velocity. Derive an expression for group velocity on the basis of
superposition of two travelling waves.

[06] CO1 L2

(b) If the kinetic energy of the electron is 3 eV, calculate de-Broglie wavelength and phase velocity of
the de-Broglie wave associated with the electron.

[04] CO1 L2

3 (a) Using Heisenberg’s uncertainty principle, show that an electron cannot exist inside the nucleus. [07] CO1 L3

(b) An electron has a speed of 500 m/s measured with an accuracy of 0.003%. With what accuracy one
can locate the position of the electron?

.

[03] CO1 L2

4 (a) Derive the time independent Schrodinger wave equation for a free particle in one dimension. [06] CO1 L3

(b) An electron is bound in a one dimensional potential well of width 0.15 nm. Find the energy value
(in eV) and the de-Broglie wavelength of the electron in the second excited state.

[04] CO1 L2

5 (a) Derive the expression for energy Eigen value and Eigen function for a particle in a one dimensional
potential well of infinite height.

[07] CO1 L3

(b) Calculate the wavelength of the X-ray photon scattered by an electron at an angle 90º, if the
incident photon has a wavelength of 1Å.

[03] CO1 L2

6 (a) Explain the failures of classical free electron theory. [06] CO2 L2

(b) Discuss the dependence of Fermi factor on temperature at T = 0 K and T > 0 K. [04] CO2 L1

7 (a) Obtain an expression for the electrical conductivity of a metal from quantum mechanical
consideration.

[06] CO2 L3

(b) Explain the following terms briefly. a) Drift velocity, b) Fermi energy and c) Fermi Temperature [04] CO2 L2
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1.a.(7) 
Max Planck developed a structural model for black body radiation that leads 

to a theoretical equation for the wavelength distribution that is in complete 

agreement with the experimental results at all wavelengths. 

According to his theory 

1.   a black body is imagined to be consisting of large number of electrical 

oscillators. 

2.  an oscillator emits or absorbs energy in discrete units. It can emit or absorb 

energy by making     a transition from one quantum state to another in the 

form of discrete energy packets known  as photons whose energy is an 

integral multiple of hν where h is the planks constant and ν is  

 the frequency. 

3. Energy emitted per unit volume per unit energy range is given by the 

product of number of modes of vibration in the given energy range and the 

energy per mode.The Energy density per unit wavelength range per unit 

volume  is given by   
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Where h is Planck’s constant, c is velocity of light, T is absolute temperature, λ 

is the wavelength and k is Boltzmann constant  

Deduction of Weins law: (2) 

It is applicable at smaller wavelengths. 

For smaller wavelengths  1kT
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          So Planck’s radiation law becomes  

  



























kT

h

e

hc
dE







18
5

 

Deduction of Rayleigh Jeans Law: (2) 

It is applicable at longer wavelengths. 

For longer wavelengths   1
kT
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1. b. (3) 

From Weins displacement law 

mK10x89.2T. 3

max

  

Put T=311K, nm3.9318.max   

2.a. (6) 
Phase velocity(Vp): It  is the speed with which an isolated  pulse / constant 

phase  propagates in a medium. (1) 

                                                                 

 
 
   A single pulse is shown in this diagram .It is represented as  

              Y = A sin [wt – kx] 

where Y is the displacement of a particle at a distance ‘x’ from the origin at a 

time ‘t’,  A is the amplitude , w is the angular velocity and k is the wave 

number. 

Imagine two points A and B at X1 and X2 at  same phase on the wave. Then  

                         (wt1-kX1) = (wt2 –kX2) 
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Group Velocity(Vg): It is the velocity with which the resultant envelope of 

varying amplitude formed by the superposition of two or more waves  

propagates . (1) 

                               Vg = 
0dk

Lt
dk

dw
 

Y 

X 



        
Let the waves be represented as  

   Y1 = A sin (wt – kx)      …… (1 

                  Y2 = A sin [(w+Δw) t – (k + Δk) x] 

      The susultant superposition is Y= Y1 +Y2 

   = 2A cos[(
2

w
)t – (

2

k
)x] sin (

2

2 ww 
)t – (

2

2 kk 
)      …. (2) 

 But Δw and Δk are small  

 2w + Δw   2w, 2k+ Δk  2k 

 Y = 2A cos [(
2

w
) t – (

2

k
) x] sin (wt-kx)  .....(2) 

Comparing equations (1) and (2), the coefficient of sin (wt-kx) in equation (2) 

can be considered as the amplitude of the wave. 

Amplitude of the resultant wave =2A cos [(Δw/2) t – (Δk/2) x] 

This amplitude varies as a wave .The velocity with which the variation in 

amplitude is propagated is referred as group velocity   

                                               Vg = (Δw/2) / (Δk/2) 

                                               Vg = Δw / Δk = 
0dk

Lt
dk

dw
  (4) 

2.b. (4) 

 Debroglie wavelength  

mE2

h
  

E=3eV = 3x1.6x10-19J 
 

m10x7 10    particle velocity = 1.02x106m/s 

Phase velocity = c2/vg =8.76x1010m/s 

3.a. (7) 
 The position and momentum of a particle cannot be determined accurately 
and simultaneously. The product of uncertainty in the measurement of 

position )( x  and momentum )( p is always greater than or equal 

to
2

h
.(2) 
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This uncertainty is not due to discrepancy with the apparatus or with the 
method of measurement, but because of the very wave nature of the object. 
This uncertainty persists as long as matter possesses wave nature. 
Different forms of Heisenberg’s Principle: 
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Here ΔL is the uncertainty in angular momentum 

        Δθ  is the uncertainty in angular displacement 

        ΔE is the uncertainty in the energy 

        Δt  is the uncertainty in the time interval during which the particle exists 

in the state E 

                             To Show that electron does not exist inside the nucleus: 

We know that the diameter of the nucleus is of the order of 10-15m.If the 

electron is to exist inside the nucleus, then the uncertainty in its position Δx 

cannot exceed the size of the nucleus  

mx 1410  

Now the uncertainty in momentum is  
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Then the momentum of the electron can at least be equal to the uncertainty 

in momentum.   

                                         Nsp 20105.0   

Now the energy of the electron with this momentum supposed to be present 

in the nucleus is given by -  for small velocities (non-relativistic)   case-                    

For high velocities, 
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Y1= A Sin(ωt – kx) Y2 = A sin [(ω+∆ω)t+(K+∆K)x] 

Superposition 

    Resultant Envelope with varying amplitude 
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From (1) and (2) 
4

o
2222 cmcpE  (5) 

On substitution  

MeVxxxxE 4.9)103()105.0()103()101.9( 4821928231  

3.b. (3) 

Given         v=500m/s accurate to 0.003% 
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From Heisenberg’s Principle, 
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4.a. (6) 

Time independent Schrödinger equation 
 
A matter wave can be represented in complex form as  

)sin(cossin wtiwtkxA   

                      
iwtkxeAsin  

Differentiating wrt   x 
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From debroglie’s relation (2) 
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Total energy of a particle E = Kinetic energy + Potential Energy 
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From (1)   
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(For one dimension) (2) 

4.b. (4) 

Energy of a particle in an infinite potential well   E = 
2
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Second excited state corresponds to n= 3 
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5.a. (7) 
Particle in an infinite potential well problem: 

Consider a particle of mass m moving along X-axis in the region from X=0 to 

X=a in a one dimensional potential well as shown in the diagram. The 

potential energy is zero inside the region and infinite outside the region. 

 

                                       

 
 
Applying, Schrodingers equation for region (1) as particle is supposed to be 

present  in region (1) (2)  
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The general solution to this expression is given by 
 

kxDkxC sincos   

 

At x=0, 0       0C  

 

At x=a, 0           D sin ka = 0     ka = n  where n = 1, 2 3 
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 To evaluate the constant D: 
  
Normalisation : For one dimension  
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The graph of versus2 x is shown below. 

 
 

It is seen from the graph that probability density is maximum at the centre for 

the particle in the first state. 

For n = 2, Second  state 
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The graph of versus2 x is shown below. 

 
 

It is seen from the graph that probability density is maximum at x = L / 4 and x 

= 3L/4 for the particle in the second state. 

5.b. (3) 
 Change in wavelength of x ray after Compton scattering is given by 

   cos1
0

1 
cm

h
d  

Wavelength of Incident photon = m10x1 10  

Here , when θ=900,  
Wavelength of scattered photon 

  m10x0242.110x0242.010x190cos1
cm

h 101010

0

1  
 

6.a. (6) 
Failures of Classical free electron theory: 

1. Prediction of low specific heats for metals: (2) 

Classical free electron theory assumes that conduction electrons are classical 

particles similar to gas molecules. Hence, they  are free to absorb energy in a 

continuous manner. Hence metals possessing more electrons must have 

higher heat content. This resulted in high specific heat given by the expression   

CV = R
2

3
cv  . 

      This was contradicted by experimental results which showed low specific 

heat for metals given by CV = R410
. 

2. Temperature dependence of electrical conductivity: (2) 

n = 2 

X=0 X=L/2 X=L 

2  

X=0 X=L/2 X=L 

2  

n = 1 



      From the assumption of kinetic theory of gases 
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Also mean collision time τ is inversely proportional to velocity, 
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However experimental studies show that 
T

1
  

3. Dependence of electrical conductivity on electron concentration: (2) 

As per free electron theory, n  

The electrical conductivity of Zinc and Cadmium are 1.09 x 107 /ohm m and .15 

x 107 /ohm m respectively which are very much less than that for Copper and 

Silver for which the values are 5.88x107  /ohm m and 6.2 x 107 /ohm m. On the 

contrary, the electron concentration for zinc and cadmium are  13.1x1028 /m3 

and   9.28 x1028 /m3 which are much higher than that for Copper and Silver 

which are 8.45x1028 /m3  and 5.85 x1028 /m3. 

These examples indicate that  n  does not hold good. 

4. Mean free path, mean collision time found from classical theory are 

incorrect 

 

6.b. (4) 

Case 1: 

For E < EF, at T = 0, 

f (E) = 

1
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This  shows  that energy levels below Fermi energy are completely occupied: 

Case 2: 

For E > FE , at T=0 

                                f (E) = 

1
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This shows that energy levels above Fermi energy are empty: 

At ordinary temperatures, for E = EF,  

    f(E) = 
2
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7.a. (6) 

 Expression for Electrical conductivity: 

Imagine a conductor across which an electric field E is applied. The equation of 

motion for an electron moving under the influence of external field is given by  

F= dp/dt = eE 

 

Let the wave number change from k1 to k2 in time interval  τF in the presence 

of electric field. 
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From quantum theory, conductivity J =
m.2

h
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Substituting (1) in (2) 

We get J = E
m
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*

F

2
  …(3)  (1) 

Since from Ohm’s, J = σE, conductivity σ can be written as  
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7.b. (4) 

Fermi energy ( FE ): 

It is the highest energy possessed by an electron at zero Kelvin. 
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Fermi Temperature: It is the temperature to which a metal is to be heated 
such that the free electrons acquire energy equal to Fermi energy. 
     

T= 0 K 

T> 0 K 

  EF 
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E
T F

F  (1) 

Drift velocity: 

The net displacement in the position of electrons per unit time caused by the 

application of electric field is known as drift velocity. 

vd = 
m

eE
     (2) 
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