
1. With neat diagram describe CRT?

The crux of the CLR is physically represented by a library named mscoree.dll (aka the Common Object

Runtime Execution Engine). When an assembly is referenced for use, mscoree.dll is loaded automatically,

which in turn loads the required assembly into memory. The runtime engine is responsible for a number of

tasks.

In addition to loading your custom assemblies and creating your custom types, the CLR will also interact with

the types contained within the .NET base class libraries when required. Although the entire base class library

has been broken into a number of discrete assemblies, the key assembly is mscorlib.dll. mscorlib.dll contains a

large number of core types that encapsulate a wide variety of common programming tasks as well as the core

data types used by all .NET languages.

2. Write a note on Command Line Debugger?

b[reak] :Set or display current breakpoints.

del[ete] :Remove one or more breakpoints.

ex[it] :Exit the debugger.

g[o] :Continue debugging the current process until hitting next breakpoint.

o[ut] :Step out of the current function.

p[rint] :Print all loaded variables (local, arguments, etc.).

si :Step into the next line.

so :Step over the next line.

3. Discuss, how to build C# application using cse.exe?

To build a simple single file assembly named TestApp.exe using the C# command-line compiler and Notepad.

First, you need some source code. Open Notepad and enter the following:

// A simple C# application.

using System;

class TestApp

{

public static void Main()

{

Console.WriteLine("Testing! 1, 2, 3");

}

}

Once we have finished, save the file in a convenient location (e.g., C:\CscExample) as TestApp.cs. Each

possibility is represented by a specific flag passed into csc.exe as a command-line parameter see below table

which are the core options of the C# compiler.

To compile TestApp.cs into a console application named TestApp.exe enter

csc /target:exe TestApp.cs

C# compiler flags support an abbreviated version, such as /t rather than /target

csc /t:exe TestApp.cs

default output used by the C# compiler, so compile TestApp.cs simply by typing

csc TestApp.cs

TestApp.exe can now be run from the command line a shows o/p as;

C:\TestApp

Testing! 1, 2, 3

Referencing External Assemblies

 To compile an application that makes use of types defined in a separate .NET assembly. Reference to

the System.Console type mscorlib.dll is automatically referenced during the compilation process.

 To illustrate the process of referencing external assemblies the TestApp application to display windows

Forms message box.

 At the command line, you must inform csc.exe which assembly contains the “used” namespaces.

 Given that you have made use of the MessageBox class, you must specify the

System.Windows.Forms.dll assembly using the /reference flag (which can be abbreviated to /r):

csc /r:System.Windows.Forms.dll testapp.cs

Compiling Multiple Source Files with csc.exe

Most projects are composed of multiple *.cs files to keep code base a bit more flexible. Assume you have class

contained in a new file named HelloMsg.cs:

// The HelloMessage class

using System;

using System.Windows.Forms;

class HelloMessage

{

public void Speak(){

MessageBox.Show("Hello...");

}

}

Now, create TestApp.cs file & write below code

using System;

class TestApp

{

public static void Main()

{

Console.WriteLine("Testing! 1, 2, 3");

HelloMessage h = new HelloMessage();

h.Speak();

}

}

You can compile your C# files by listing each input file explicitly:

csc /r:System.Windows.Forms.dll testapp.cs hellomsg.cs

As an alternative, csc /r:System.Windows.Forms.dll *.cs

4. With program demonstrate the concept of passing reference types by value and by reference?

class A
{

public int x;
public A(int z)
{

x = z;
}

}
class Program
{

private static void passbyreferance(ref A a1)
{

a1.x = 50;

}

private static void passbyvalue(A a1)
{

a1.x = 50;
}
static void Main(string[] args)
{

A a1 = new A(10);
Console.WriteLine("Pass by value");
Console.WriteLine("Before");
Console.WriteLine("{0}",a1.x);
passbyvalue(a1);
Console.WriteLine("after");
Console.WriteLine("{0}", a1.x);

Console.WriteLine("Pass by referance");
Console.WriteLine("Before");
Console.WriteLine("{0}", a1.x);
passbyreferance(ref a1);
Console.WriteLine("after");
Console.WriteLine("{0}", a1.x);

Console.ReadKey();
}

}

Output:
Pass by value
Before
10
After
50

Pass by reference
Before
50
After
50

5. List the differences between value type and reference type? Write a program to illustrate value type

containing reference type?

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
class A
{

public int x;

public A(int z)
{

x = z;
}

}

struct B
{

public int y;
public A a1;
public B(int z)
{

a1 = new A(z);
y = 30;

}
}

class Program
{

static void Main(string[] args)
{

B b1 = new B(40);
B b2 = b1;
Console.WriteLine("before making any change");
Console.WriteLine("{0} {1}", b1.y,b1.a1.x);
Console.WriteLine("{0} {1}", b2.y, b2.a1.x);

b2.a1.x = 60;
b2.y = 60;

Console.WriteLine("after making change");

Console.WriteLine("{0} {1}", b1.y, b1.a1.x);
Console.WriteLine("{0} {1}", b2.y, b2.a1.x);
Console.ReadKey();

}
}

Output:
Before making any change
30 40
30 40

After making change
30 60
60 60

6. Illustrate the use of method parameter modifiers with an example?

7. List the functions associated with System. Object class and override any two methods?

Namespace System
{

Public class Object
{

public Object();
public virtual bool Equals(object obj);
public static bool Equals(object objA, object objB);
public virtual int GetHashCode();
public Type GetType();
protected object MemberwiseClone();
public static bool ReferenceEquals(object objA, object objB)
public virtual string ToString();

}
}

Class person
{

string name;
int id;

public person(string p, int p_2)
{

// TODO: Complete member initialization
name = p;
id = p_2;

}

public override bool Equals(object obj)
{

person p = (person) obj;
if ((this.id == p.id) && (this.name==p.name))

return true;
else

return false;
}

public override int GetHashCode()
{

return id;
}

}

class Program
{

static void Main(string[] args)
{

person p1 = new person("ram",10);
person p2 = new person("shyam", 10);
Console.WriteLine("{0} {1}",p1.Equals(p2),p1.GetHashCode());

}
}

