1. With neat diagram describe CRT?

Some .MNET
Compiler
Your .NET
Source Code
from Some l
-NET=Aware
Language * dll or *.exe
Assemb Ly
(CIL, Metadata, and Manifest)
[

-NET Execution Engine
(mscoree.dll)

Base Class Class Loadex

Libraries
(mscorlib.d11)
and So Forth) Jitter
= |
Platform-—
Specific
Instructions

|

Execute the
member .

The crux of the CLR is physicaly represented by a library named mscoree.dll (aka the Common Object
Runtime Execution Engine). When an assembly is referenced for use, mscoree.dll is loaded automatically,
which in turn loads the required assembly into memory. The runtime engine is responsible for a number of
tasks.

In addition to loading your custom assemblies and creating your custom types, the CLR will also interact with
the types contained within the .NET base class libraries when required. Although the entire base class library
has been broken into a number of discrete assemblies, the key assembly is mscorlib.dll. mscorlib.dll contains a
large number of core types that encapsulate a wide variety of common programming tasks as well as the core
datatypes used by all .NET languages.

2. Writeanoteon Command Line Debugger?

b[reak] :Set or display current breakpoints.

del[ete] :Remove one or more breakpoints.

ex[it] :Exit the debugger.

g[o] :Continue debugging the current process until hitting next breakpoint.
o[ut] :Step out of the current function.

p[rint] :Print all loaded variables (local, arguments, etc.).

s :Step into the next line.

S0 :Step over the next line.

3. Discuss, how to build C# application using cse.exe?

To build a ssimple single file assembly named TestApp.exe using the C# command-line compiler and Notepad.
First, you need some source code. Open Notepad and enter the following:

Il A simple C# application.

using System;

class TestApp

{
public static void Main()

{
ConsoleWriteLine(" Testing! 1, 2, 3");
}
}

Once we have finished, save the file in a convenient location (e.g., C:\CscExample) as TestApp.cs. Each
possibility is represented by a specific flag passed into csc.exe as a command-line parameter see below table

which are the core options of the C# compiler.

Output-centric Options of the C# Compiler

Option Meaning in Life

/out This option is used to specify the name of the assembly to be created. By
default, the assembly name is the same as the name of the initial input *. cs
file (in the case of a *. d11) or the name of the type containing the program’s
Main() method (in the case of an *. exe).

/target:exe This option builds an executable console application. This is the default file
output type, and thus may be omitted when building this application type.

/target:library This option builds a single-file *.d11 assembly.

/target:module This option buflds a module. Modules are elements of multifile assemblies

(fully described in Chapter 11).

/target:winexe Although you are free to build Windows-based applications using the
/target:exe flag, the /target:winexe flag prevents a console window from
appearing in the background.

To compile TestApp.csinto a console application named TestApp.exe enter
csc /tar get:exe TestApp.cs
C# compiler flags support an abbreviated version, such as /t rather than /tar get
csc /t:exe TestApp.cs
default output used by the C# compiler, so compile TestApp.cs simply by typing

csc TestApp.cs
TestApp.exe can now be run from the command line a shows o/p as,
C:\TestApp
Testing! 1,2, 3

Referencing External Assemblies

To compile an application that makes use of types defined in a separate .NET assembly. Reference to

the System.Console type mscorlib.dll is automatically referenced during the compilation process.

To illustrate the process of referencing externa assemblies the TestApp application to display windows

Forms message box.

At the command line, you must inform csc.exe which assembly contains the “used” namespaces.

Given that you have made wuse of the MessageBox class, you must specify

System.Windows.For ms.dll assembly using the /reference flag (which can be abbreviated to /r):
csc /r: System.Windows.Forms.dll testapp.cs

Compiling Multiple Sour ce Files with csc.exe

Most projects are composed of multiple *.cs files to keep code base a bit more flexible. Assume you have class

contained in anew file named HelloM sg.cs:

/I The HelloM essage class

using System;
using System.Windows.Forms;
class HelloMessage
{
public void Speak(){
MessageBox.Show("Hello...");
}
}

Now, create TestApp.csfile & write below code
using System;
class TestApp

{
public static void Main()

{

Console.WriteLine("Testing! 1, 2, 3");

HelloMessage h = new HelloM essage();

h.Speak();

}

}
Y ou can compile your C# files by listing each input file explicitly:
csc /r:System.Windows.Forms.dll testapp.cs hellomsg.cs

Asan dternative, csc/r:System.Windows.Forms.dil *.cs

4. With program demonstrate the concept of passing reference types by value and by reference?

classA
{
publicint x;
public A(int 2)
{
X =2
}
}

class Program

{

private static void passbyreferance(ref A al)

{
al.x = 50;

}

private static void passbyvalue(A al)
{

}
static void Main(string[] args)

{

al.x = 50;

A al = new A(10);
Console.WriteLine(""Pass by value");
Console WriteLine("Before");
Console.WriteLine("{ 0} ",al.x);
passbyvalue(al);
Console.WriteLine("after");
Console.WriteLine("{0}", al.x);

Console WriteLine("Pass by referance”);
Console.WriteLine("Before™);
Console.WriteLine("{0}", al.x);
passbyreferance(ref al);
Console.WriteLine("after");
Console.WriteLine("{0}", al.x);

Console.ReadK ey();

}
}

Output:

Pass by value
Before

10

After

50

Pass by reference
Before

50

After

50

5. List the differences between value type and reference type? Write a program to illustrate value type

containing reference type?

VALUE TYPES

REFERENCE TYPES

Allocated on the stack

Allocated on the managed heap

Variables die when they fall out of the defining
scope

Variables die when the managed heap is
garbage collected

Variables are local copies

Variables are peointing to the memaory occupied
by the allocated instance

Variable are passed by value

Variables are passed by reference

Variables must directly derive from
System.ValueType

Variables can derive from any other type as
long as that type is not "sealed”

Value types are always sealed and cannot be
extended

Reference type is not sealed, so it may
function as a base to other types.

Value types are never placed onto the heap and
therefore do not need to be finalized

Reference types finalized before garbage
collection occurs

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

classA

{

publicint x;

public A(int 2)

{
X=1Z
}
}
struct B
{
publicinty;
public A al;
public B(int z)
{
al = new A(2);
y =30;
}
}
class Program
{

static void Main(string[] args)
{

B bl = new B(40);

B b2 = b1;

Console.WriteLine("'before making any change™);
Console.WriteLine("{0} {1}", bl.y,bl.al.x);
Console.WriteLine("{0} {1}", b2.y, b2.al.x);

b2.al.x = 60;
b2.y = 60;

Console.WriteLine("after making change");

Console.WriteLine("{0} {1}", bl.y, bl.al.x);
Console.WriteLine("{0} {1}", b2.y, b2.al.x);
Console.ReadKey();

Output:

Before making any change
3040

3040

After making change
3060
60 60

6. lllustratethe use of method parameter modifierswith an example?

METHOD PARAMETER MODIFIERS

* Normally methods will take parameter. While calling a method, parameters can be passed in
different ways.

* C# provides some parameter modifiers as shown:

Parameter Meaning
Modifier

(none) If a parameter is not attached with any modifier, then parameter’s value is passed
to the method. This is the default way of passing parameter. (call-by-value)

out The output parameters are assigned by the called-method.

ref The value is initially assigned by the caller, and may be optionally reassigned by
the called-method

params This can be used to send variable number of arguments as a single parameter.
Any method can have only one params modifier and it should be the last
parameter for the method.

THE DEFAULT PARAMETER PASSING BEHAVIOR

* By default, the parameters are passed to a method by-value.

+ If we do not mark an argument with a parameter-centric modifier, a copy of the data is passed into
the method.

* S0, the changes made for parameters within a method will not affect the actual parameters of the
calling method.

+ Consider the following program:

using System;
class Test
{
public static void swap(int x, int y)
{
int temp=x;
X=Y;
y=temp;
¥
public static void Main{)
{
int x=5,y=20;
Console.WriteLine("Before: x={0%}, v={1}", %, v¥);
swap(x,y);
Console. WriteLine("After: x={0%}, y={1}", x, ¥);
k;
b
Quiput;

Before: x=5, y=20
After : x=5, y=20

out KEYWORD

Dutput parameters are assigned by the called-method.
+ In some of the methods, we need to return a value to a calling-method. Instead of using return
statement, C# provides a modifier for a parameter as out.
* Consider the following program:

using System;

class Test
{
public static void add(int x, int y, out int z)
i
Z=X+Y;
¥
public static void Main()
i
int x=5,y=20, z;
add(x, v, out z);
Console.WriteLine("z={0}", z);
1
¥
Dutput;
=25

= Useful purpose of out: It allows the caller to obtain multiple return values from a single method-
invocation.

* Consider the following program:
using System;

class Test
i
public static void MyFun{out int x, out string v, out bool z)
{
®=5;
y="Hello, how are you?";
z=true;
1
public static void Main()
{
int a;
string str;
bool b;
MyFun{out a, out str, out b);
Console. WriteLine("integer={0%} ", a);
Console WriteLine("string={0}", str);
Console . WriteLine("boolean={0} ", b);
1
1
Dutputs
integer=>5,

string=Hello, how are you?
boolean=true

ref KEYWORD

+ The value is assigned by the caller but may be reassigned within the scope of the method-call.

« These are necessary

when we wish to allow a method to operate on (and usually change the values

of) various data points declared in the caller's scope.
+ Differences between output and reference parameters:

— The output parameters do not need to be initialized before sending to called-method.
Because it is assumed that the called-method will fill the value for such parameter.
— The reference parameters must be initialized before sending to called-method.
Because, we are passing a reference to an existing type and if we don't assign an initial value,

it would be equivalent to working on NULL pointer.
* Consider the following program:

using System;

class Test
{
public static void MyFun{ref string s)
{
s=s.Tolpper();
by
public static void Main()
{
string s="hello";
Console. WriteLine("Before: {0}",s);
MyFun{ref s);
Console. WriteLine("After:{0}",5);
¥
b
Quipyts
Before: hello
After: HELLO

+ From the above example, we can observe that for params parameter, we can pass an array or
individual elements.

+« We can use params even when the parameters to be passed are of different types.

s Consider the following program:

using System;

class Test
1
public static void MyFun{params object[] arr)
{
for{int i=0; i<arr.Length; i++)
iffarr{i] is Int32)
Console WriteLine(" {07} is an integer”, arr{i]);
else if{arr[i] is string)
Console. WriteLine(" {0} is a string”, arr[i]};
else if{arr[i] is bool)
Console WriteLine("{0} is a boolean",arr[i]);
¥
¥
public static void Main()
{
int x=5;
string s="hello";
bool b=true;
MyFun(b, x, s);
T

Quipyts

True is a Boolean
5 is an integer
hello is a string

7. List thefunctions associated with System. Object class and override any two methods?

Namespace System
{

Public class Object
{

public Object();
public virtual bool Equals(object obj);
public static bool Equals(object objA, object objB);
public virtual int GetHashCode();
public Type GetType();
protected object MemberwiseClone();
public static bool ReferenceEqual s(object objA, object objB)
public virtual string ToString();
}
}

Class person
{
string name;
intid;

public person(string p, int p_2)

{
// TODO: Complete member initialization
name = p;
id=p_2;

}

public override bool Equals(object obj)
{
person p = (person) obj;
if ((this.id == p.id) && (this.name==p.name))
return true;
ese
return false;
}

public override int GetHashCode()
{

returnid;

}
}

class Program

{
static void Main(string[] args)

{

person pl = new person(“ram”,10);
person p2 = new person(*shyam"”, 10);
Console.WriteLine("{ 0} {1}",p1l.Equals(p2),pl.GetHashCode());

