
USN

Internal Assessment Test 1 – Sept. 2017
Sub: DATA STRUCTURES AND APPLICATIONS Sub Code: 15CS33 Branch: CSE

Date: 20/09/2017 Duration: 90 min’s Max Marks: 50 Sem / Sec: 3(C) OBE
Answer any FIVE FULL Questions MARKS CO RBT

1 (a) Define Dynamic Memory Allocation? Explain the dynamic allocation functions
with syntax and example?

[10] CO2 L1

2 (b) Write KMP Pattern Matching Algorithm. Apply the Same to search pattern
‘abcdabcy’ in text ‘abcxabcdabxabcdabcdabcy’

[10] CO6 L3

3 (a) Write a function to sort integers using Bubble sort algorithm. [05] CO5 L2

(b) Define Data Structure? Explain the Classification and operations. [05] CO1 L1

4 (a) Write an algorithm to implement stack using dynamic array whose initial capacity
is 1 and array doubling is used to increase the stack capacity (reallocation)
whenever an element is added to a full stack.

[10] CO3 L3

5 (a) Define String? Explain the following a) strtok b) strstr [05] CO1 L1

(b) Write a recursive function for Tower of Hanoi and Ackerman’s function [05] CO3 L2

6 (a) Write function to convert infix to postfix. Apply the same for the following
expression (A+(B*C)/D^E)

[10] CO5 L3

7 (a) Define Sparse Matrix? Explain triplets and transpose of sparse Matrix with an
example

[05] CO5 L3

(b) Differentiate between Structure and union [05] CO1 L2

Define Dynamic memory allocation? Explain the dynamic memory allocation functions?

2. KMP algorithm

3a) BUBBLE sort

3b) data structure and its classifications

5a) define string and explain the following a)strtok and b)stsstr

strtok() function

strtok() function in C tokenizes/parses the given string using delimiter. Syntax for strtok()

function is given below.

char * strtok (char * str, const char * delimiters);

EXAMPLE PROGRAM FOR STRTOK() FUNCTION IN C:
In this program, input string “Test,string1,Test,string2:Test:string3” is parsed using strtok()

function. Delimiter comma (,) is used to separate each sub strings from input string.

#include <stdio.h>
#include <string.h>
int main ()
{

char string[50] ="Test,string1,Test,string2:Test:string3";

char *p;
printf ("String \"%s\" is split into tokens:\n",string);

p = strtok (string,",:");

while (p!= NULL)
{

printf ("%s\n",p);
p = strtok (NULL, ",:");

}

return 0;
}
String “Test,string1,Test,string2:Test:string3” is split into tokens:
Test
string1
Test
string2
Test
string3

5b) Tower of Hanoi and Ackerman function

6a) infix to postfix conversion

7 b) Differentiate between union and structure

A matrix is a two-dimensional data object made of m rows and n columns, therefore having total
m x n values. If most of the elements of the matrix have 0 value, then it is called a sparse matrix.
Why to use Sparse Matrix instead of simple matrix ?
 Storage: There are lesser non-zero elements than zeros and thus lesser memory can be used

to store only those elements.
 Computing time: Computing time can be saved by logically designing a data structure

traversing only non-zero elements..

Representing a sparse matrix by a 2D array leads to wastage of lots of memory as zeroes in the
matrix are of no use in most of the cases. So, instead of storing zeroes with non-zero elements,
we only store non-zero elements. This means storing non-zero elements with triples- (Row,
Column, value).
Sparse Matrix Representations can be done in many ways following are two common
representations:

1. Array representation
2. Linked list representation

Method 1: Using Arrays
2D array is used to represent a sparse matrix in which there are three rows named as

 Row: Index of row, where non-zero element is located
 Column: Index of column, where non-zero element is located
 Value: Value of the non zero element located at index – (row,column)

A matrix is a two-dimensional data object made of m rows and n columns, therefore having total
m x n values. If most of the elements of the matrix have 0 value, then it is called a sparse matrix.
Why to use Sparse Matrix instead of simple matrix ?
 Storage: There are lesser non-zero elements than zeros and thus lesser memory can be used

to store only those elements.
 Computing time: Computing time can be saved by logically designing a data structure

traversing only non-zero elements..

Representing a sparse matrix by a 2D array leads to wastage of lots of memory as zeroes in the
matrix are of no use in most of the cases. So, instead of storing zeroes with non-zero elements,
we only store non-zero elements. This means storing non-zero elements with triples- (Row,
Column, value).
Sparse Matrix Representations can be done in many ways following are two common
representations:

1. Array representation
2. Linked list representation

Method 1: Using Arrays
2D array is used to represent a sparse matrix in which there are three rows named as

 Row: Index of row, where non-zero element is located
 Column: Index of column, where non-zero element is located
 Value: Value of the non zero element located at index – (row,column)

A matrix is a two-dimensional data object made of m rows and n columns, therefore having total
m x n values. If most of the elements of the matrix have 0 value, then it is called a sparse matrix.
Why to use Sparse Matrix instead of simple matrix ?
 Storage: There are lesser non-zero elements than zeros and thus lesser memory can be used

to store only those elements.
 Computing time: Computing time can be saved by logically designing a data structure

traversing only non-zero elements..

Representing a sparse matrix by a 2D array leads to wastage of lots of memory as zeroes in the
matrix are of no use in most of the cases. So, instead of storing zeroes with non-zero elements,
we only store non-zero elements. This means storing non-zero elements with triples- (Row,
Column, value).
Sparse Matrix Representations can be done in many ways following are two common
representations:

1. Array representation
2. Linked list representation

Method 1: Using Arrays
2D array is used to represent a sparse matrix in which there are three rows named as

 Row: Index of row, where non-zero element is located
 Column: Index of column, where non-zero element is located
 Value: Value of the non zero element located at index – (row,column)

