USN					

Internal Assessment Test 1 – Sept. 2017

Sub:	DATA STRUCTURES AND APPLICATIONS Sub Code: 15CS33 Brain	nch: CSE	,		
Date:	20/09/2017 Duration: 90 min's Max Marks: 50 Sem / Sec: 3(C)	- (OBE	
	Answer any FIVE FULL Questions	MARKS	CO	RBT	
1 (a)	Define Dynamic Memory Allocation? Explain the dynamic allocation functions with syntax and example?	[10]	CO2	L1	
2 (b)	Write KMP Pattern Matching Algorithm. Apply the Same to search pattern 'abcdabcy' in text 'abcxabcdabxabcdabcdabcy'	[10]	CO6	L3	
3 (a)	Write a function to sort integers using Bubble sort algorithm.	[05]	CO5	L2	
(b)	Define Data Structure? Explain the Classification and operations.	[05]	CO1	L1	
4 (a)	Write an algorithm to implement stack using dynamic array whose initial capacity is 1 and array doubling is used to increase the stack capacity (reallocation) whenever an element is added to a full stack.	[10]	CO3	L3	
5 (a)	Define String? Explain the following a) strtok b) strstr	[05]	CO1	L1	
(b)	Write a recursive function for Tower of Hanoi and Ackerman's function	[05]	CO3	L2	
6 (a)	Write function to convert infix to postfix. Apply the same for the following expression $(A+(B*C)/D^E)$				
7 (a)	Define Sparse Matrix? Explain triplets and transpose of sparse Matrix with an example	[05]	CO5	L3	
(b)	Differentiate between Structure and union	[05]	CO1	L2	

Define Dynamic memor	v allocation? Explain	the dynamic memory	vallocation functions?

* The menuty management functions that are used to allocate of dealloce

Junetions => malloc => calloc => Realloc => free

* Using the Junetions malloc, calloc and sealloc memory gace can be altocated where as using the function free () space can be deleted.

(malloc ()

- * Junction allows the program to allocate menudy explicitly as to when required and the exact amount needed during enecution.
- * This function allocated a block of menudy. The size of ithe block is number of bytes Specified in the parameter.
- * It is defend in stallb.h header file. Syntan is # include < stallb.h >

Ptx = (dela type *) malloc(size).
Where ptx is a pointer variable of type datatype

datatype can be any of the baric datatype datatype of bytes required.

For enangile: ent *ptx:

ptx = (int *) malloc (size of (int));

19

19

10098

Since a byter of tree memory space & avaitable, the quinction mallor allocator a block of to byter of memory and returns the address of the first byte.

This returned address & retoled for the pointer.

Skyter are received

- * calloc stands for contiguous allocation of multiple blocks and is mainly used to allocate memory for arrays.
- The mumber of blocks determined by n. Zike number of blocks on the size of each block in equal to the number of bytes specified in the parameter i.e size.
- * The total number of bytes allocated in n + size and all bytes will be intialized to 0.
- * The syntan:

include < stdlib. h>

pt & = [dolatype x) calle (n, size)

where

* ptx in pointer variable of type data-type

- * data-type can be any of the baric data type of usee defaned data type.
- * n in the number of blocks to be allocated
- * Size in the number of bytes in each block
- to On successful allocation, the function return the address of first byte of allocated number. Since the address is returned the letter type is a void pointed, By type carting appropriately we can use it to stoke integer float etc.
- If specified size of memory is not available, the condition is called overflow of memory. In such care, the function reluent xluxx.

For enample: ent *ptro

The = (ent +) calloc(5, size of (int))

- Associated by using the functions callocal mallocal of newsy which in allocated by using the functions callocal mallocal of newsy so leallocal.
- * It is responsibility of a programmer to de-allocate membry whenever et is not required by the program and initialize pts to NUX

- * Sometimes, the allocated memory may not be sufficient and we may suprise adultional memory space. Our another situation, where allocated memory may be much larger and we want to reduce.
- * In bothe the situations the size of allocated menicly can be changed wring realloci) and placed in called reallocation of menicly.
- * sealloc() changes the size of the block by entendenting the deleting the membry at the end of the block
- * If the existing menudy can be estended, ptx value will not be changed.
- * If the memory can not be sharged extended, the function allocates completely new block.

Syntax:

Enclude < Std lib, h>

Tt& = (datatype *) reallec (ptx, size) .

whele

pt & a pointer to block of menory which is allocated

Size in new Size of block

- * On successful allocation, the function return the address of
- * If menty can not be allocated, function detuend MUXX

2. KMP algorithm

- * This algorithm was conceived by Donald Knuth and Vaugh
 Fratt and James Mossis in 1977.
- * In the naive of Exula force applicate, wasted time in comparition on mixmatch. To overcome KNAT algorithm use longest prefer in a Suffex concept. In
- A This LPS will reduce the number of comparishon O(m,n) to O(m+n)

where n > Length of Steing m > Length of Pattern String.

How to find LPS

- * while finding LPS, It pose faither function preprocessed the pattern to find matches of preferred of the pattern with Etdelf.
- * It is defined as spe of the Raegest perfer P[0--9-1] that is also a suffer of P[1....I]
- A It also indicates now much of the last conjunction can be searced if if fails.

```
Algorithm

Input: pat in a pattern string

At is length of pattern string

April is an array which we need to compute

output: up is an array

April 201=0; // initially a loss 201 to gero

// she boop calculator 2=1 to N-1

int i=1" int j=0;

white (i < M)

if (pat 2i] == pat [j]) // if the characters are

matching inchement;

arright sprinting

it (j = 0)

if (j = 0)
```

```
Algorithm KNATScarch (chase Stx., pts. p. M., N.)

Stx => main Stxing

Ptx >> Pattern Stxing

All >> Length of the Jattorn

All >> Length of the Stxing

int LPSIJ;

ComputexLPS (Ptx, LPS, NA);

int i=0;

int j=0;

vohite (i < NI)

if (pat [j] == $tx [i])

if (pat [j] == $tx [i])

if i+t;
```

```
else if (icht se se patsi: = ste [i])

if (j!=0)

j = lpsej-ij-
else

i = i+1
```

7

3

Steing.
-> abcxabcdab x abed abcdabcy.
Dabexabedab x abed abed abey Patteen abe dabey [0]0]0]0]1 2 3 0
abc da bcy
abckabcdabxabcdabcdabcy abcdabcy
abc xabcdabxabcdabcdabcy fabcdabley prefen & Snyfin
Sonce we have prefer of some suffer compare
from the beginning of the pattern of i.e a to x
from the beginning of the pattern # i.e a to x abc x abcdab x abcdabcdabcy. abc dbbc y
abc x abcdab x abcdabcdabcy. abc x abcdab x abcdabcy. abc x abcdab x abcdabcy. perfer perfer d compare from d
abc x abcdab x abcdabcdabcy. abc dabc y abc x abcdab x abcdabc dabc y paper 1 support
abc x abcdab x abcdabcdabcy. abc x abcdab x abcdabcy abc x abcdab x abcdabcy perfer compare from d abc x abcdab x abcda bcdabcy.
abc x abcdab x abcdabcdabcy. abc x abcdab x abcdabcy abc x abcdab x abcdabcy perfer proper from d abc x abcdab x abcda bcdabcy

3b) data structure and its classifications

Data structure in way of Organizing data in a memory so that effectantry Dola Stantuse en Specialized format for Organizing, storing and retreating the data. Types of Data Structure * Data structure can be clarified as follows DePrimitère Data structure 2) Mon-Premetive Data Structure 3) Leneal Data Structure 4) xlon-Leneal DataStructure a Primitère Data-type ver Data Structure * Baxic data types that are available in most of the Foogramming Language. Data structures that are directly operated upon by machine-level enxtructions are known as princtive data types ?) Integer: used to sepresent a number notitiont * For example declinal point Eg: 12,90 2) float os. wheel to represent a number with double decimal point Eg: 18.50 3) Character: Used to Represent single character Eq: 'C', 'a' 4) Boolean: Used to seprement dogeral values i.e true or falle

Von-Trimetive Data Structure

* The data structures are derived from the primitive data Structures. They xtress on formation of sets of homogeneous and heleeogeneous data elements.

Enample: Axeorys, stack, Quene, Linked Lint, Tree, Graph

Lineae - Data Structure

+ In Lineal Data Structure, dorta is allonged in Linear fachion. Eg: Arrays, stack Queue, Linked kint

Jon-Lineal Data Structure

* In vion Linear Data Structure, data in not allanged in oxder of linear faction

Eg: Trees, Graph, table etc.

Data Structure


```
* This function Searches the Substraing in String for the disast occurree from the beginning. The following values are returned:

* On Success, a pointer to the characted is returned

* On failure, Norr is returned.

* Prototype: char * Streth (char * Str, char * Sub-Ut)

* where Str is the String

Sub-Ut & is substrained be reached in the

* Jos enemple: char $150]: What before panming

char $2[5] = "ab":

char $2[5] = "ab":

char $56;

SG = Str Str ($1, Sa);

Printf ("/. SIN", SG);

Output: abefore panm
```

strtok() function

strtok() function in C tokenizes/parses the given string using delimiter. Syntax for strtok() function is given below.

char * strtok (char * str, const char * delimiters);

EXAMPLE PROGRAM FOR STRTOK() FUNCTION IN C:

In this program, input string "Test,string1,Test,string2:Test:string3" is parsed using strtok() function. Delimiter comma (,) is used to separate each sub strings from input string.

```
#include <stdio.h>
#include <string.h>
int main ()
{
      char string[50] ="Test,string1,Test,string2:Test:string3";
```

```
char *p;
    printf ("String \"%s\" is split into tokens:\n",string);
    p = strtok (string,",:");

while (p!= NULL)
{
        printf ("%s\n",p);
        p = strtok (NULL, ",:");
}

return 0;
}
String "Test,string1,Test,string2:Test:string3" is split into tokens:
Test
string1
Test
string2
Test
string3
```

5b) Tower of Hanoi and Ackerman function

Vo	ed tower (ent n, char scr, char temp, chardet)
3	
	€f (n=≥1)
	Pelntf ("Move dist 12d from +/octo 1/oc", n, sec, det). · letuen:
	3
	1/ Move n-1 dent from source to temp
	More not dent from source to temp tone (n-1, she, dent, temp)
	Il More non dêrk from source to delknation
L-71-1-1	Il Move non dink from source to destination printf ("Move denk 1.d from 1.c to 1.c", n, sec, dut);
V	11 more no desk from tomo to destination
(11 More n-1 deak from temp to dealthoution tower (n-1, temp, SEC, dest).
	The state of the s

ent Ack (ent m, sitn)
Ş
%+ (m==0)
lotuen (n+1)°
eke el ((m>0) fg (n==0))
% $(m==0)$ Rotaen $(n+1)^{e}$ eke & $((m>0)$ & $(n==0)$) Autuen $(Ack(m-1, 1))^{e}$
else
return dek (m-1, ack(m, n-1))

6a) infix to postfix conversion

	ent presety (chal c)
	£ 1
	Ef (c== #1)
	Ketuen o
	else of (c== (')
	Retuen 1°
	exe if (c== +' il c=='-')
	eke if (c== +'11 c=='-') Return 20
	else &f(c==1*1 1 c==1/1 1 c==1/1)
	Return 3°
	elle
	letur & P.
	3
	Ent mainc)
	§
	chal Enfin [MAX], portfix [MAX].
10	chal Enfin [MAX], portfia [MAX].
	Printy (" enter the Engla exposercion my) o scanf (" v.s", infin)
	scanfer v.s. Enfen)
	pach (#1)°
	tol(120; inflacia!='10'; 1++)
	E // Ef Ets alphanumeric pace it in numeri postfix
	E // Ef its alphanumeric pace it in numeri postfex Ef (Esalnum (Enfin (E)))
	postfer ff + tJ= infin list,
	Il check if the charder is " then puch into Stack
	elae of Cinfinci] == (1)
	Ruch (Enter CET)
	1/ if the character in 's' then pop the character from cke if (infin[i]==')') stack untill, top of stack
41013	else ef (intencis==')') stack onthe, top of stack
	F V V

	while (Stack Etop]! = '(1)
-	portfer Es++J=popc)c
	3
	top "
	3
	elke
	& 11 check the priority of chalacter
	halela (organista Petrox Charl) > - organista College
1	while (prolity (stack [top]) > = priority (infincia)
	portfalf++J=pop(se
	Juch (infincis)
	3
3	
	Nhile (stack [top]! = #1')
	· ·
	portfer [j++]=pop()°
	DOLH > 12 - 1010
	portfixfjttJ=100°
	printf ("In The portion expression i % s", portion
3	

13212				
ะพรา	enpression:	((++(7	B-C) *D) 1 E+F)
Stack	top of the	symbol		Operation =
#	Stack #	(Fush into stack
]#[C]	(C		Puch Puto Stack
# ()	C	A	-A \	Place "It "in -
# (()	C	+	A	+ has higher proceedings.
# 0 0 +	+	L	A	Puch into Stack
# (() + ()	(B	AB	Place It En portifia
#100+0	(~	AB	- has higher precedented puch into Stack
#100+0-	-	C	ABC	Puch Ento
#[c]c+ 4 -1	-)	ABC-	pop out untill we get matching
# (() +	+	*	ABC-	* has higher precedence
# (((+) *	*	P	ABC-D	place it in
1#10101×1*	*)	ABC-DXt	Pop onthe we get mathing Y'
#(0)	(٨	ABC-12+1+	Punh Ento Stack
#[C] ^	٨	E	ABC-DX+B	Place it in
# 0 1	٨	+	ABC-DXTE	produce them
		¥.		A from stack placed it in Position

Difference Between Structure	and Unton
_SFRUCTURE	ONION
i) Keyword struct is used to	i) Keyword Union in used
- STRUCTURE i) Keyword Struct is used to deffine Structure	to define a union
a) when a valable is accordated	e) when a variable accociate
with a structure the compiler	with a union the compiler
allocated membly to each of	allocates memory by
the vallable.	considering the size of the
	darget memoly.
	J
3) The Size of Structure will be	3) The Size of union will be equal to
greater than of equal to the	will be equal taxe to
3) The Size of Structure will be greater than of equal to the Sum of size of its members	Size of Largertmenser.
4) Each member with in a	4) Memdy allocated in Shared by Endividual
4) Each membel with in a Structure in arrighed uneque	in Shared by Endividual
Storage also of docations	members.
V	
5) The address of each member	s) The address is same
note be en according Order.	for all the members
This Endicates that memory	of a union. every
for each number will start	nœmbre begine at
at different offset values.	different officet values.
6) Indévidual member can be	6) Only one member
accessed at a time	can be accorded

A matrix is a two-dimensional data object made of m rows and n columns, therefore having total m x n values. If most of the elements of the matrix have **0 value**, then it is called a sparse matrix. Why to use Sparse Matrix instead of simple matrix?

- **Storage:** There are lesser non-zero elements than zeros and thus lesser memory can be used to store only those elements.
- **Computing time:** Computing time can be saved by logically designing a data structure traversing only non-zero elements..

Representing a sparse matrix by a 2D array leads to wastage of lots of memory as zeroes in the matrix are of no use in most of the cases. So, instead of storing zeroes with non-zero elements, we only store non-zero elements. This means storing non-zero elements with **triples-** (**Row**, **Column**, **value**).

Sparse Matrix Representations can be done in many ways following are two common representations:

- 1. Array representation
- 2. Linked list representation

Method 1: Using Arrays

2D array is used to represent a sparse matrix in which there are three rows named as

- **Row:** Index of row, where non-zero element is located
- Column: Index of column, where non-zero element is located
- Value: Value of the non zero element located at index (row,column)