

USN

Internal Assessment Test 1 – Sept. 2017

Sub: OBJECT ORIENTED MODELING AND DESIGN Sub Code: 10CS71 Branch: ISE

Date: 20/09/2017 Duration: 90 min’s Max Marks: 50 Sem / Sec: VII / A & B OBE

Answer any FIVE FULL Questions MARKS CO RBT

1 (a) Describe the important characteristics of object orientation. [06] CO1 L1

 (b) Using the class diagram below, prepare an object diagram for the two triangles

with a common side under the following condition: a) A point belongs to exactly

one polygon b) A point belongs to one or more polygon.

[2+2] CO2 L4

2 (a) Explain aggregation and composition with suitable example. [3+3] CO2 L4

 (b) Draw class diagram for the following: a) Programmer uses computer language on

projects. b) Worker is a butcher or baker or candlestick maker.

[2+2] CO2 L1

USN

Internal Assessment Test 1 – Sept. 2017

Sub: OBJECT ORIENTED MODELING AND DESIGN Sub Code: 10CS71 Branch: ISE

Date: 20/09/2017 Duration: 90 min’s Max Marks: 50 Sem / Sec: VII / A & B OBE

Answer any FIVE FULL Questions MARKS CO RBT

1 (a) Describe the important characteristics of object orientation. [06] CO1 L1

 (b) Using the class diagram below, prepare an object diagram for the two triangles

with a common side under the following condition: a) A point belongs to exactly

one polygon b) A point belongs to one or more polygon.

[2+2] CO2 L4

2 (a) Explain aggregation and composition with suitable example. [3+3] CO2 L4

 (b) Draw class diagram for the following: a) Programmer uses computer language on

projects. b) Worker is a butcher or baker or candlestick maker.

[2+2] CO2 L1

Polygon Point
xCord

yCord

1
3..*

{ordered}

Polygon Point
xCord
yCord

1
3..*

{ordered}

3 (a) Prepare a class diagram for the group of classes given below. Add at least three

relationships (associations, generalization). Use association names where needed

and show multiplicity. School, playground, principle, book, student, teacher,

cafeteria, class room, rest room, computer.

[06] CO2 L4

 (b) What is visibility? Explain with suitable example. [04] CO2 L1

4 (a) Explain the concept of workaround and its approaches with suitable example. [10] CO1 L4

5 (a) Explain state diagram and write state model for a telephonic line with activities. [10] CO2 L4

6 (a) A simple digital watch has a display and two buttons to set it, the A button, and the

B button. The watch has two modes of operation, display time, set time in the

display time mode, the watch displays hours and minutes, separated by a flashing

colon. The set time mode has two sub modes, set hours, set minutes. The button A

selects modes. Each time it is pressed, the mode advances in the sequence: display,

set hours, set minutes, display etc. Within the sub modes the button B advances the

hours or minutes once each time it is pressed. Buttons must be released before they

can generate another event. Prepare a state diagram of the watch.

[06] CO2 L4

 (b) Explain qualified association with suitable example. [04] CO2 L4

7 (a) Explain the following with the help of UML: a) Derived attributes b) Ordering c)

Packages d) Enumeration e) Multiplicity (object and attributes).

[10] CO2 L4

----------------- (All the Best) -------------------------

3 (a) Prepare a class diagram for the group of classes given below. Add at least three

relationships (associations, generalization). Use association names where needed

and show multiplicity. School, playground, principle, book, student, teacher,

cafeteria, class room, rest room, computer.

[06] CO2 L4

 (b) What is visibility? Explain with suitable example. [04] CO2 L1

 4 (a) Explain the concept of workaround and its approaches with suitable example. [10] CO1 L4

5 (a) Explain state diagram and write state model for a telephonic line with activities. [10] CO2 L4

6 (a) A simple digital watch has a display and two buttons to set it, the A button, and the

B button. The watch has two modes of operation, display time, set time in the

display time mode, the watch displays hours and minutes, separated by a flashing

colon. The set time mode has two sub modes, set hours, set minutes. The button A

selects modes. Each time it is pressed, the mode advances in the sequence: display,

set hours, set minutes, display etc. Within the sub modes the button B advances the

hours or minutes once each time it is pressed. Buttons must be released before they

can generate another event. Prepare a state diagram of the watch.

[06] CO2 L4

 (b) Explain qualified association with suitable example. [04] CO2 L4

7 (a) Explain the following with the help of UML: a) Derived attributes b) Ordering c)

Packages d) Enumeration e) Multiplicity (object and attributes).

[10] CO2 L4

----------------- (All the Best) -------------------------

1. A) Describe the important

characteristics of object orientation.

(6M)

Basic Principles of Object
Orientation

Object Orientation

c
la

s
s

if
ic

a
ti

o
n

id
e

n
ti

ty

p
o

ly
m

o
rp

h
is

m

in
h

e
ri

ta
n

c
e

1.Identity
 Means that data is quantized into discrete(individual),

distinguishable entities .

 Eg: Queen in chess game, monitor, bicycle, binary
tree, cot, dinning table, etc…

2.Classification
 Means that objects with the same data structure

(attributes) and behavior (operations) are grouped
into classes.

 Eg: class bycycle

{ int frame_size, wheel_size, no_of_gears;

void shift();

void move();

void repair();

}

Classes

 A class is a set of objects that share common
structure and a common behavior

 A class is an abstraction in that it:

 Emphasizes relevant characteristics

 Suppresses other characteristics

3.Inheritance
 allows objects to be built from other objects

 Provides programming by extension as opposed to
programming by reinvention

 Allows classes to share and reuse behaviors and
attributes

CSE

4.Polymorphism
 it means objects that can take on or assume many

different forms

 The same operation may behave differently on
different classes

 Allows user to write generic, reusable code more
easily

B) Using the class diagram below,

prepare an object diagram for the two

triangles with a common side under the

following condition: a) A point belongs

to exactly one polygon b) A point

belongs to one or more polygon. (4M)

Class modeling/Ch 3 OOMD / 06CS71 3.78

Class modeling/Ch 3 OOMD / 06CS71 3.79

2. A) Explain aggregation and

composition with suitable example.

(6M).

19

Aggregation

 A special form of association that models a whole-part relationship between

an aggregate (the whole) and its parts.

 Aggregate Object is made of constituent parts. (parts of an object)

 The aggregation association represents the part-whole relation between

classes.

 Denoted by a diamond and lines

 Diamond attaches to the aggregate (whole) while lines attach to the parts

 Transitivity – If A is part of B, and B is part of C, then A is part of C

 Anti symmetric – If A is part of B, then B is not part of A.

LawnMower

Blade Engine Wheel

20

Aggregation (cont.)

 Aggregation tests:

 Is the phrase ―part of‖ used to describe the relationship?

 A door is ―part of‖ a car

 Are some operations on the whole automatically applied to its
parts?

 Move the car, move the door.

 Are some attribute values propagated from the whole to all or some
of its parts?

 The car is blue, therefore the door is blue.

 A door is part of a car. A car is not part of a door.

Car Door House

Whole Part

If 2 objects are tightly bound by a part – whole relationship, it is an

aggregation. If 2 objects are considered as independent, even though they

may often be linked, it is an association.

22

Composition

 Composition is a form of aggregation with strong
ownership and coincident lifetime of the parts by the
whole.

 The part object may belong to only one whole – the
parts are usually expected to live and die with the
whole.

(usually, any deletion of the whole is considered to
cascade to the parts}{filled diamond}

Aggregation and Composition

 Aggregation is a special form of association that specifies a whole-part
relationship between the aggregate (the whole) and a component (the
part); aggregation is the part-of relationship.

 Composition is a form of aggregation with strong ownership and
coincident lifetime of the parts by the whole; the part object may belong
to only one whole – the parts are usually expected to live and die with
the whole.

B) Draw class diagram for the

following: a) Programmer uses

computer language on projects. b)

Worker is a butcher or baker or

candlestick maker. (4M)

3. A) Prepare a class diagram for the

group of classes given below. Add at

least three relationships (associations,

generalization). Use association names

where needed and show multiplicity.

School, playground, principle, book,

student, teacher, cafeteria, class room,

rest room, computer. (6M)

Class modeling/Ch 3 OOMD / 06CS71 3.105

 B) What is visibility? Explain with

 suitable example. (4M)

Visibility
 Visibility refers to the ability of a method to reference a feature

from another class and has the possible values of public, protected

& private.

 Public—Visible anywhere that the class in which it appears is

visible; denoted by +.

 Package—Visible anywhere in the package containing the class in
which it appears; denoted by ~.

 Protected—Visible in the class in which it appears and all its sub-
classes; denoted by #.

 Private—Visible only in the class in which it appears; denoted by -

 Restricting visibility is the same as restricting accessibility.

12

Visibility Example

4. Explain the concept of workaround

and its approaches with suitable

example. (10M)

Workarounds:

• A method for overcoming a problem or limitation in a program or system.

•To deal with implementation issues with multiple inheritance – workaround is used.

•3 Approaches:

1. Delegation using composition of parts.

• Delegation: Implementation mechanism by which an object forwards an

operation to another object for execution.

• Recast a super class as composition in which each constituent part replaces a

generalization.

• Need not create the various combinations as explicit classes. All combinations of

subclasses from the different generalizations are possible.

FullTimeEmployee PartTimeEmployee Manager IndividualContributor

Employee

managerialStatusemploymentStatus

Workaround for multiple inheritance - delegation

EmployeeEmployment EmployeeManagement

111 1

Eg: EmployeeEmployment becomes a superclass of FullTimeEmployee and

PartTimeEmployee. EmployeeManagement becomes a superclass of Manager

and individualContributor.

Employee has been modeled as composition of EmployeeEmployment and

EmployeeManagement.

An operation sent to Employee object will be redirected to the EmployeeEmployment

and EmployeeManagement part by the Employee class.

FullTimeEmployee PartTimeEmployee Manager IndividualContributor

Employee

managerialStatusemploymentStatus

Workaround for multiple inheritance – inheritance and delegation

EmployeeManagement
11

2. Inherit the most important class and delegate the rest:

• Preserves identity and inheritance across the most important generalization.

•Degrade the remaining generalizations to composition and delegate their

operations.

3. Nested Generalization:

• Factor on one generalization first, then the other. This multiplies out all possible

combinations.

•Eg: Under FullTimeEmployee and PartTimeEmployee, add two subclasses for

managers and individual contributors.

•This preserves inheritance but duplicates code and violates the spirit of OO

programming.

FullTimManager FullTimeIndividual

Contributor

PartTime

Manager

PartTimeIndividual

Contributor

Employee

partTimeEmpStatusfullTimeEmpStatus

Workaround for multiple inheritance – nested generalization

FullTimeEmployee PartTimeEmployee

employmentStatus

Issues to consider when selecting the best workaround:

1. Superclasses of equal importance: If a subclass has several superclasses,

all of equal importance, it may be best to use Delegation using composition of

parts (1st Approach)

2. Dominant superclass: If one superclass clearly dominates and the other are

less important, preserve inheritance by using : Inherit the most important class

and delegate the rest, or nested generalization (2nd or 3rd Approach)

3. Few subclasses: If the number of combinations is small, consider nested

generalization (3rd Approach). If the number of combinations are large, avoid it.

4. Sequencing generalization sets: If nested generalization is used, then factor

on the most important criterion first, the next most important second and so

forth.

5. Large quantities of code: Avoid nested generalization (3rd Approach) as it will

duplicate large quantity of code.

6. Identity: Strict identity has to be considered as important. Only nested

generalization (3rd Approach) preserves it.

5. Explain state diagram and write state

model for a telephonic line with

activities. (10M)

6. A simple digital watch has a display

and two buttons to set it, the A button,

and the B button. The watch has two

modes of operation, display time, set

time in the display time mode, the

watch displays hours and minutes,

separated by a flashing colon. The set

time mode has two sub modes, set

hours, set minutes. The button A

selects modes. Each time it is pressed,

the mode advances in the sequence:

display, set hours, set minutes, display

etc. Within the sub modes the button B

advances the hours or minutes once

each time it is pressed. Buttons must

be released before they can generate

another event. Prepare a state diagram

of the watch. (6M)

In Figure A5.2 the event A refers to pressing the A button. In this diagram,

releasing the button is unimportant and is not shown (although you must

obviously release the button before you can press it again). Note that a new

button event cannot be generated while any button is pressed. You can

consider this a constraint on the input events themselves and need not show it

in the state diagram (although it would not be wrong to do so).

B) Explain qualified association with suitable

example. (4M)

Qualified Association
 A qualified association is an association in which

an attribute called the qualifier disambiguates the
objects for a "many" association end.

 It is possible to define qualifiers for one-to many

and many-to-many associations.

 A qualifier selects among the target objects,
reducing the effective multiplicity, from "many" to
"one.“

Contd..

Bank
1 * Account

accountNumber

Bank
1 0..1

Account accountNumber

Not qualified

Qualified

The notation for qualifier→ small box on the end of the association

line near the source class. The source class and qualifier yields

target class.

Qualified Association
 Both below models are acceptable but the qualified model adds

information

 But the qualified model adds multiplicity constraint, that the
combination of a bank and an account number yields at most one
account.

 Figure 3.22 illustrates the most common use of a qualifier- for
associations with one to-many multiplicity. A bank services multiple
accounts. An account belongs to a single bank. Within the context of a
bank, the account number specifies a unique account. Bank and
Account are classes and accountNumber is the qualifier. Qualification
reduces the effective multiplicity of this association from one-to-many
to one-to-one.

7. Explain the following with the help of

UML: a) Derived attributes b)

Ordering c) Packages d) Enumeration

e) Multiplicity (object and attributes).

(10M)

a) Derived Attributes

48

Derived data
 Classes, attributes and associations may be derived from others.

 The notation for a derived element is a slash (/) in front of the
element name.

 The constraint that determines the derivation should also be
shown.

Person

birthdate

/ age

{age=currentDate – birthdate}

CurrentDate

Derived attribute

b) Ordering

Ordering
Ordering occurs for “many” multiplicity

Often the objects on a many association end have no
explicit order and can regard them as a set. However,
the objects have explicit order some times.

 Example: A workstation screen containing a number of
overlapping windows. Each window on a screen occurs
at most once.

Screen Window 1 *VisibleOn

{ordered}

43

Association: ordering
 On a ‘many” association end, sometimes, it is required that objects

have an explicit order.

 For example, Figure 3.15 shows a workstation screen containing a
number of overlapping windows. Each window on a screen occurs at
most once. The windows have an explicit order, so only the topmost
window is visible at any point on the screen.

 In this case the ordering is an important part of the association

 Example:

c) Packages

Packages

 A package is a group of elements (classes, association,

generalization, and lesser packages) with a common theme.

 A package partitions a model making it easier to understand and

manage. Large applications may require several tiers of packages.

 Notation for package is a box with a tab.

Package

Package Name

Customer Order

Sales

**

placed

d) Enumeration

Enumeration

Data type – description of values.

Enumeration is a data type that has finite set of values.

 To define data type, called enumeration type, we need 2 things:

 A name for the data type

 A set of values for the data type

 enum {FALSE, TRUE};

 enum rank {TWO, THREE, FOUR, FIVE, SIX, SEVEN, EIGHT,

NINE, TEN, JACK, QUEEN, KING, ACE};

 enum colors {BLACK, BLUE, GREEN, CYAN, RED};

 The values are written in all caps because they are constants

Draw class diagram with enumeration data type

Class card

{

enum suit={spades,clubs,hearts,diamonds};

enum rank={ace,king,queen};

}

Card

suit : suit

rank : rank

<<enumeration>>

rank

ace

king

queen

…

<<enumeration>>

suit

spades

clubs

hearts

diamonds

e) Multiplicity

Multiplicity

Multiplicity is a collection on the cardinality of a set, also applied to attributes

(database application).

Multiplicity of an attribute specifies the number of possible values for each

instantiation of an attribute. i.e., whether an attribute is mandatory ([1]) or an

optional value ([0..1] or * i.e., null value for database attributes) .

Multiplicity also indicates whether an attribute is single valued or can be a

collection.

Person

name:string[1]

address:string[1..*]

phoneNumber.string[*]

birthDate:date[1]

Multiplicity
 Specifies the number of instances of one class that may

relate to a single instance of an associated class

 Multiplicity constrains the number of related objects

 UML diagrams explicitly list multiplicity at the end of
association lines.

Multiplicity – UML notations
 Exactly one - 1

 Zero or one - 0..1

 Many - 0..* or *

 One or more - 1..*

 Exact Number - e.g. 3..4 or 6

 Or a complex relationship – e.g. 0..1, 3..4, 6..* would
mean any number of objects other than 2 or 5

Multiplicity:Many-to-Many
Person

name

Company

name
* *
OwnsStock

John:Person

name=“John”

Jeff:Person

name=“Jeff”

Alice:Person

name=“Alice”

Sue:Person

name=“Sue”

Mary:Person

name=“Mary” GE:Company

name=“GE”

IBM:Company

Name=“IBM”

Object diagram

Multiplicity: one-to-one
Country

name

CapitalCity

name1 1

HasCapital

Canada:Country

Name=“Canada”

Ottawa:CapitalCity

Name=“Ottawa”1 1

India:Country

Name=“India”

NewDelhi:CapitalCity

Name=“NewDelhi”1 1

USA:Country

name

WashingtonDC:CapitalCity

Name=“WashingtonDC”1 1

HasCapital

HasCapital

HasCapital

Class

diagram

Object

diagram

Multiplicity: Zero-or-one

 A workstation may have one of its windows designated
as the console to receive general error messages.

 It is also possible that no console exists.

 Multiplicity v/s cardinality: multiplicity is a constraint
on the size of a collection ; cardinality is the count of
elements that are actually in a collection. therefore
multiplicity is a constraint on a cardinality

Workstation Window
1 0..1

console

	1st internals_QP - Mrs.Madhuri. M.pdf
	IAT1_Solution - Mrs.Madhuri. M.pdf

