
Page 1 of 9

CMR
INSTITUTE OF
TECHNOLOGY

USN

Internal Assesment Test - I
Sub: Computer Networks Code: 15CS52

Date: 18 / 09 / 2017 Duration: 90 mins Max Marks: 50 Sem: VA,B & C Branch: CSE

Note: Answer any 3 questions from Module-1 and 2questions from Module-2

Module-1 Marks
OBE

CO RBT
1 Explain different types of Network Application architectures [5+5] CO1 L2

2 Explain HTTP request and response message formats with the relevant
diagrams

[5+5] CO1 L2

3 Write short note on a). Cookies b). Web cache [5+5] CO1 L1
4 a). Explain the working of ‘Clever Trading Algorithm’ in Bit Torrent. [4] CO1 L2

b). What is DHT? Explain the working of Circular DHT [6] CO1 L2
5 Design and implement a network application for client server

communication using sockets over TCP
[10] CO2 L3

Module-2 Marks
OBE

CO RBT
6 a). With a neat diagram, explain UDP segment structure [4] CO2 L2

b). With an example, explain how to generate UDP checksum and how the
generated checksum is used to detect the transmission errors at the
receiver end?
(Note: Take any four 16 bit data blocks as input)

[6] CO2 L3

7 Explain the working of rdt2.2 and rdt3.0 with the help of FSMs. [5+5] CO2 L2
8 Explain the working of Go-Back-N for pipelined transmission. Use

state transition diagram? Why the sliding window size is restricted to
2k-1 for ‘k’ bit sequence number in GO-Back-N protocol?

[10] CO1 L2

Course Outcomes

P
O

1

P
O

2

P
O

3

P
O

4

P
O

5

P
O

6

P
O

7

P
O

8

P
O

9

P
O

10

P
O

11

P
O

12
CO1:

Describe the application, transport, network layer
protocols and services

2 1 1

CO2:
Implement the basic client-server communication
model using TCP and UDP protocols

2 2 3 1 1

CO3: Design and implementation of IPCs 2 2 3 1 1

CO4:

Design and implementation of different routing
algorithms based on Link State or Distance Vector
routing concepts

2 3 3 1 1

CO5:
Explain the working of Cellular networks based
on the real life scenarios

2 1 1 1

CO6:
Describe and illustrate the concepts of multimedia
networking with the guaranteed Qos support

2 1 1 1

Page 2 of 9

Cognitive level KEYWORDS

L1 List, define, tell, describe, identify, show, label, collect, examine, tabulate, quote, name, who, when, where, etc.

L2 summarize, describe, interpret, contrast, predict, associate, distinguish, estimate, differentiate, discuss, extend

L3
Apply, demonstrate, calculate, complete, illustrate, show, solve, examine, modify, relate, change, classify, experiment,
discover.

L4 Analyze, separate, order, explain, connect, classify, arrange, divide, compare, select, explain, infer.

L5
Assess, decide, rank, grade, test, measure, recommend, convince, select, judge, explain, discriminate, support, conclude,
compare, summarize.

PO1 - Engineering knowledge; PO2 - Problem analysis; PO3 - Design/development of solutions;
PO4 - Conduct investigations of complex problems; PO5 - Modern tool usage; PO6 - The Engineer and society;
PO7- Environment and sustainability; PO8– Ethics; PO9 - Individual and team work;
PO10 - Communication; PO11 - Project management and finance; PO12 - Life-long learning

Page 3 of 9

1. Explain different types of Network Application architectures
Answer:

The application architecture, dictates how the application is structured over the various end systems. In

choosing the application architecture, an application developer will likely draw on one of the two

predominant architectural paradigms used in modern network applications

 Client-Server architecture

 Peer-to-peer (P2P) architecture

1. Client Server architecture:

In a client-server architecture, there is an always-on host, called the server, which services requests from many of the

hosts, called clients. A classic example is the Web application for which an always-on Web server services requests

from browsers running on client hosts.

When a Web server receives a request for an object from a client host, it responds by sending the requested object to

the client host. Note that with the client-server architecture, clients do not directly communicate with each other; for

example, in the Web application, two browsers do not directly communicate. Another characteristic of the client-server

architecture is that the server has a fixed, well-known address, called an IP address (which we’ll discuss soon). Because

the server has a fixed, well-known address, and because the server is always on, a client can always contact the server

by sending a packet to the server’s IP address. Some of the better-known applications with a client-server architecture

include the Web, FTP, Telnet, and e-mail.

2. Peer-to peer Architecture: The figure given below depicts the architecture of peer to peer model.

Page 4 of 9

In a P2P architecture, there is minimal (or no) reliance on dedicated servers in data centers. Instead the

application exploits direct communication between pairs of intermittently connected hosts, called peers.

The peers are not owned by the service provider, but are instead desktops and laptops controlled by users,

with most of the peers residing in homes, universities, and offices. Because the peers communicate without

passing through a dedicated server, the architecture is called peer-to-peer. Many of today’s most popular

and traffic-intensive applications are based on P2P architectures. These applications include file sharing (e.g.,

BitTorrent), peer-assisted download acceleration (e.g., Xunlei), Internet Telephony (e.g., Skype), and IPTV

(e.g., Kankan and PPstream).

One of the most compelling features of P2P architectures is their self-scalability. For example, in a P2P file-

sharing application, although each peer generates workload by requesting files, each peer also adds service

capacity to the system by distributing files to other peers. P2P architectures are also cost effective, since

they normally don’t require significant server infrastructure and server bandwidth.

2. Explain HTTP request and response message formats with the relevant diagrams

Answer:

The HTTP specifications [RFC 1945; RFC 2616] include the definitions of the HTTP message formats.

There are two types of HTTP messages, request messages and response messages, both of which are

discussed below.

HTTP Request Message Format:

Page 5 of 9

The first line of an HTTP request message is called the request line; the subsequent lines are called the

header lines. The request line has three fields: the method field, the URL field, and the HTTP version field.

The method field can take on several different values, including GET, POST, HEAD, PUT, and DELETE.

The great majority of HTTP request messages use the GET method. The GET method is used when the

browser requests an object, with the requested object identified in the URL field.

Example Message request in HTTP:

GET /somedir/page.html HTTP/1.1

Host: www.someschool.edu

Connection: close

User-agent: Mozilla/5.0

Accept-language: fr

In this Request line, the browser is requesting the object /somedir/page.html. The version is self-explanatory;

in this example, the browser implements version HTTP/1.1.

Now let’s look at the header lines in the example. The header line Host: www.someschool.edu specifies the

host on which the object resides. By including the Connection: close header line, the browser is telling the

server that it doesn’t want to bother with persistent connections; it wants the server to close the connection

after sending the requested object. The User-agent: header line specifies the user agent, that is, the browser

type that is making the request to the server. Here the user agent is Mozilla/5.0, a Firefox browser. This

header line is useful because the server can actually send different versions of the same object to different

types of user agents. Finally, the Accept language: header indicates that the user prefers to receive a French

version of the object, if such an object exists on the server; otherwise, the server should send its default

version. The Accept-language: header is just one of many content negotiation headers available in HTTP.

HTTP Response Message Format: Below we provide a typical HTTP response message.

Page 6 of 9

It has three sections: an initial status line, six header lines, and then the entity body. The entity body is the

meat of the message it contains the requested object itself (represented by data data data data data ...). The

status line has three fields: the protocol version field, a status code, and a corresponding status message.

Entity body contains the actual data.

HTTP/1.1 200 OK

Connection: close

Date: Tue, 09 Aug 2011 15:44:04 GMT

Server: Apache/2.2.3 (CentOS)

Last-Modified: Tue, 09 Aug 2011 15:11:03 GMT

Content-Length: 6821

Content-Type: text/html

(data data data data data ...)

In this example, the status line indicates that the server is using HTTP/1.1 and that everything is OK

(that is, the server has found, and is sending, the requested object). Now let’s look at the header lines. The

server uses the Connection: close header line to tell the client that it is going to close the TCP connection

after sending the message. The Date: header line indicates the time and date when the HTTP response was

created and sent by the server. Note that this is not the time when the object was created or last modified; it is

the time when the server retrieves the object from its file system, inserts the object into the response message,

and sends the response message. The Server: header line indicates that the message was generated by an

Apache Web server; it is analogous to the User-agent: header line in the HTTP request message. The Last-

Modified: header line indicates the time and date when the object was created or last modified. The Last-

Modified: header, which we will soon cover in more detail, is critical for object caching, both in the local

client and in network cache servers (also known as proxy servers). The Content-Length: header line indicates

the number of bytes in the object being sent. The Content-Type: header line indicates that the object in the

entity body is HTML text. (The object type is officially indicated by the Content-Type: header and not by the

file extension.)

3. Write short note on a). Cookies b). Web cache

Page 7 of 9

a). Cookies

It is often desirable for a Web site to identify users, either because the server wishes to restrict user access or

because it wants to serve content as a function of the user identity. For these purposes, HTTP uses cookies.

Cookie is a small piece of information the website makes the broser to store in the client system for further

reference.

The following diagram depicts how the cookie works.

As shown in the above given figure, cookie technology has four components:

(1) a cookie header line in the HTTP response message;

(2) a cookie header line in the HTTP request message;

(3) a cookie file kept on the user’s end system and managed by the user’s browser; and

(4) a back-end database at the Web site.

Using the figure given above, let’s walk through an example of how cookies work. Suppose Susan, who

always accesses the Web using Internet Explorer from her home PC, contacts Amazon.com for the first time.

Let us suppose that in the past she has already visited the eBay site. When the request comes into the Amazon

Web server, the server creates a unique identification number and creates an entry in its back-end database

that is indexed by the identification number. The Amazon Web server then responds to Susan’s browser,

including in the HTTP response a Set-cookie: header, which contains the identification number. For example,

the header line might be: Set-cookie: 1678 When Susan’s browser receives the HTTP response message, it

Page 8 of 9

sees the Setcookie: header. The browser then appends a line to the special cookie file that it manages. This

line includes the hostname of the server and the identification number in the Set-cookie: header. Note that the

cookie file already has an entry for eBay, since Susan has visited that site in the past. As Susan

continues to browse the Amazon site, each time she requests a Web page, her browser consults her cookie

file, extracts her identification number for this site, and puts a cookie header line that includes the

identification number in the HTTP request. Specifically, each of her HTTP requests to the Amazon server

includes the header line: Cookie: 1678, In this manner, the Amazon server is able to track Susan’s activity at

the Amazon site.

The first time a user visits a site, the user can provide a user identification (possibly his or her name). During

the subsequent sessions, the browser passes a cookie header to the server, thereby identifying the user to the

server. Cookies can thus be used to create a user session layer on top of stateless HTTP. For example, when a

user logs in to a Web-based e-mail application (such as Hotmail), the browser sends cookie information to the

server, permitting the server to identify the user throughout the user’s session with the application.

b). Web cache

A Web cache also called a proxy server is a network entity that satisfies HTTP requests on the behalf of an

origin Web server. The Web cache has its own disk storage and keeps copies of recently requested objects in

this storage. A user’s browser can be configured so that all of the user’s HTTP requests are first directed to

the Web cache. Once a browser is configured, each browser request for an object is first directed to the Web

cache.

The following figure illustrates the working of a web cache.

As an example, suppose a browser is requesting the object http://www.someschool.edu/campus.gif. Here is

what happens:

1. The browser establishes a TCP connection to the Web cache and sends an HTTP request for the object to

the Web cache.

2. The Web cache checks to see if it has a copy of the object stored locally. If it does, the Web cache returns

the object within an HTTP response message to the client browser.

Page 9 of 9

3. If the Web cache does not have the object, the Web cache opens a TCP connection to the origin server, that

is, to www.someschool.edu. The Web cache then sends an HTTP request for the object into the cache-to-

server TCP connection. After receiving this request, the origin server sends the object within an HTTP

response to the Web cache.

4. When the Web cache receives the object, it stores a copy in its local storage and sends a copy, within an

HTTP response message, to the client browser (over the existing TCP connection between the client browser

and the Web cache).

Note that a cache is both a server and a client at the same time. When it receives requests from and sends

responses to a browser, it is a server. When it sends requests to and receives responses from an origin server,

it is a client.

