
USN

Internal Assessment Test 1 – Sept. 2017
Sub: Embedded Computing Systems Sub Code: 10CS72 Branch: CSE

Date: 20/09/2017 Duration: 90 mins Max Marks: 50 Sem/Sec: A, B and C OBE
Answer any FIVE FULL Questions MARKS CO RBT

1 (a) What is an embedded computer system? Explain the characteristics and constraints
of embedded computing applications.

[05] CO1 L1

(b) Differentiate between a general-purpose computer and an embedded system.
Explain the UML class diagram for signal and time out events.

[05] CO2 L2

2 (a) Explain with a neat diagram the embedded system design process. [05] CO2 L2

(b) Illustrate the format of the CPSR of ARM. Apply ARM status word logic and show
the content of CPSR for the operation: -4+5

[05] CO3 L3

3 (a) Discuss the requirements chart, with an example. [05] CO2 L2

(b) Illustrate the format of ARM data processing instruction. What is the meaning of
these ARM condition codes: EQ, NE, MI, VS, GE, and LT?

[05] CO1 L1

4 (a) Explain with illustration the sequence diagram for transmitting control input in a
model train controller.

[05] CO2 L2

(b) Write program in ARM assembly code to implement the following C assignment.
y=(a<<3) | (b&15);

[05] CO3 L3

5 (a) Define Digital Command Control (DCC). Explain the conceptual specification of a
model train controller system.

[05] CO2 L2

(b) In DCC standard, the packets are prone to errors as electrical signal may contain
noise. What is impact of this problem? Design a mechanism that should be part of
the standard to overcome this limitation.

[05] CO6 L6

6 (a) Differentiate between:
(i) Cache hit and cache miss with a neat diagram.
(ii) LDRH and LDRB of ARM instructions.

[05] CO2 L2

(b) Write ARM assembly code to implement the following C assignment:
z = a*(b+c)-d*e; Analyze your ARM code and determine if it can be improved in
terms of the register usage.

[05] CO4 L4

7 (a) What is interrupt? Describe its mechanism, with a neat diagram. [05] CO1 L1

(b) Explain supervisor mode in ARM Apply ARM status word logic and show the
content of CPSR for the operation: (231– 1) + 1.

[05] CO3 L3

8 (a) Explain the following with diagram.
i. Direct-mapped cache

ii. Set-associative cache

[05] CO2 L2

(b) Consider the following C statement: x=a/b; There is an inherent problem in this
piece of code. Test this code to identify the problem and propose a solution in
ARM assembly.

[05] CO5 L5

Internal Assessment Test 1 – September 2017

10CS72 - Embedded Computing Systems

Answers

1.
a. What is an embedded computer system? Explain the characteristics and constraints of

embedded computing applications.

An Embedded computer system is any device that includes a programmable
computer but is not itself intended to be a general-purpose computer. An
embedded system is typically an electronic/electro-mechanical system
designed to perform a specific function and is a combination of both hardware
and software.
Fax machine, clock built from a microprocessor, microwave oven, washing
machine, elevator controller are examples of embedded computing system.

Characteristics of Embedded computing applications:

1) Embedded computing systems have to provide sophisticated functionality:
#Complex algorithms: The operations performed by the microprocessor may
be very sophisticated. For example, a microprocessor to control an automobile
engine must perform complex functions to optimize the performance of the car
while minimizing pollution and fuel utilization.
#User interface: Microprocessors are frequently used to control complex user
interfaces that may include multiple menus and many options. For example,
moving maps in Global Positioning System (GPS) navigation have
sophisticated user interfaces.

2) Embedded computing operations must often be performed to meet
deadlines:
#Real time: Many embedded computing systems have to perform in real
time— if the data is not ready by a certain deadline, the system breaks. In
some cases, failure to meet a deadline is unsafe and can even endanger lives. In
other cases, it may not create safety problems but does create unhappy
customers—missed deadlines in printers, for example, can result in scrambled
pages.
#Multirate: Not only must operations be completed by deadlines, but many
embedded computing systems have several real-time activities going on at the
same time. They may simultaneously control some operations that run at slow
rates and others that run at high rates. Multimedia applications are prime
examples of multirate behavior. The audio and video portions of a multimedia
stream run at very different rates, but they must remain closely synchronized.
Failure to meet a deadline on either the audio or video portions spoils the
perception of the entire presentation.

3) Costs of various sorts are also very important:
#Manufacturing cost: The total cost of building the system is very important in
many cases. Manufacturing cost is determined by many factors, including the
type of microprocessor used, the amount of memory required, and the types of
I/O devices.
#Power and energy: Power consumption directly affects the cost of the
hardware, since a larger power supply may be necessary. Energy consumption
affects battery life, which is important in many applications, as well as heat
consumption, which can be important even in desktop applications.

4) Finally, most embedded computing systems are designed by small teams on
tight deadlines.

Constraints of an embedded system:
How much hardware do we need?
We need to choose the amount of computing power we apply to our problem.
We cannot only select the type of microprocessor used, but also select the
amount of memory, the peripheral devices, and more. Since we often must
meet performance deadlines and manufacturing cost constraints, the choice of
hardware is important—too little hardware and the system fails to meet its
deadlines, too much hardware and it becomes too expensive.

How do we meet deadlines?
The brute force way of meeting a deadline is to speed up the hardware so that
the program runs faster. But, this makes the system more expensive. It may
seem that increasing the CPU clock rate increases program speed. But, it may
not be true, because the program’s speed may be limited by the memory
system.

How do we minimize power consumption?
In battery-powered applications, power consumption is extremely important.
Even in non-battery applications, excessive power consumption can increase
heat dissipation. One way to make a digital system consume less power is to
make it run more slowly. But too much slowing down of the system leads to
missing deadlines. Careful design is required to slow down the noncritical
parts of the machine for power consumption while still meeting necessary
performance goals.

How do we design for upgradability?
The hardware platform may be used over several product generations or for
several different versions of a product in the same generation, with few or no
changes. However, we want to be able to add features by changing software.
We need to think ahead when we design a machine that will provide the
required performance for software in the future.

Does it really work?

Reliability is always important when selling products—customers rightly
expect that products they buy will work. Reliability is especially important in
some applications, such as safety-critical systems. If we wait until we have a
running system and try to eliminate the bugs, we will be too late—we won’t
find enough bugs, it will be too expensive to fix them, and it will take too long
as well. Following set of challenges comes from the characteristics of the
components and systems themselves:

#Complex testing: Exercising an embedded system is generally more difficult
than typing in some data. We may have to run a real machine in order to
generate the proper data. The timing of data is often important, meaning that
we cannot separate the testing of an embedded computer from the machine in
which it is embedded.

#Limited observability and controllability: Embedded computing systems
usually do not come with keyboards and screens. This makes it more difficult
to see what is going on and to affect the system’s operation. We may be forced
to watch the values of electrical signals on the microprocessor bus, for
example, to know what is going on inside the system. Moreover, in real-time
applications we may not be able to easily stop the system to see what is going
on inside.

#Restricted development environments: The development environments for
embedded systems (the tools used to develop software and hardware) are often
much more limited than those available for PCs and workstations. We
generally compile code on one type of machine, such as a PC, and download it
onto the embedded system. To debug the code, we must usually rely on
programs that run on the PC or workstation and then look inside the embedded
system.

b. Differentiate between a general-purpose computer and an embedded system. Explain
the UML class diagram for signal and time out events.

Embedded System General Purpose System
Has real-time capabilities Does not support real-time requirements
Low power consumption Higher power consumption
Performance requirements are tied to
application deadlines. ‘Faster is better’ does
not hold as long as the deadlines are met.

Broad mix of computing requirements
creates the need for better performance. That
is, the faster is always better.

Less expensive More expensive
Customized for an application As the name suggests, generally supports a

broad range of applications.
Contains a general purpose OS. May or may not contain an OS.

The class diagram below shows the stereotype <<signal>> for a mouse
click event.mouse click event. The attributes for the class are

leftorrightbutton that specifies which button is clicked, and the (x,y)
coordinates of the mouse pointer.

The timer class is shown below. The attribute for this is the counter value.

2.
a. Explain with a neat diagram the embedded system design process.

Embedded system design process:

Figure above summarizes the major steps in the embedded system design process.
The design process starts with the system requirements,followed byspecification,
where we create a more detailed description of what we want. But the specification
states only how the system behaves, not how it is built. The details of the system’s
internals begin to take shape when we develop the architecture, which gives the
system structure in terms of large components. Once we know the components we
need, we can design components, including both software modules and any
specialized hardware we need. Based on those components, we can finally integrate
it into a complete system.

There are two ways of considering the design:

 Top–down—Design begins with the most abstract description of the system
and conclude with concrete details.

 Bottom–up— Design starts with the components to build a system. Bottom–
up design steps are shown in the figure as dashed-line arrows. We need
bottom–up design because:

o We do not have perfect insight into how later stages of the design
process will turn out.

o Decisions at one stage of design are based upon estimates of what will
happen later. In general, the less experience we have with the design of
similar systems, the more we will have to rely on bottom-up design
information to help us refine the system.

We need to consider the major goals of the design:
#manufacturing cost;
#performance (both overall speed and deadlines); and
#power consumption.
We must also consider the tasks we need to perform at every step in the design
process. At each step in the design, we add detail:
#We must analyze the design at each step to determine how we can meet the
specifications.
#We must then refine the design to add detail.
#And we must verify the design to ensure that it still meets all system goals, such as
cost, speed, and so on.

1 Requirements
Clearly, before we design a system, we must know what we are designing. The initial
stages of the design process capture this information for use in creating the
architecture and components. There are two phases:

 First, we gather an informal description from the customers known as
requirements.

 Second, we refine the requirements into a specification that contains enough
information to begin designing the system architecture.

Separating out requirements analysis and specification is necessary because of the
large gap between what the customers can describe about the system they want and
what the architects need to design the system. Hence we need to keep in mind the
following:

 Consumers of embedded systems are usually not embedded system
designers. Theycan only envision users’ interactions with the system.

 Consumers may have unrealistic expectations as to what can be done within
their budgets; and they may also express their desires in a language very
different from system architects’ jargon.

 A Structured approach is to capture consistent set of requirements from the
customer and then massaging those requirements into a more formal

specification.Thishelps us manage the process of translating from the
consumer’s language to the designer’s.

Requirements may be functional or nonfunctional.
Functional Requirements:
We need to capture the basic functions of the embedded system. This described what
the embedded system is intended to do.

Non-functional requirements include:
#Performance: The speed of the system is often a major consideration both for the
usability of the system and for its ultimate cost. Performance is a combination of soft
performance metrics such as approximate time to perform a user-level function and
hard deadlines by which a particular operation must be completed.
#Cost: The target cost or purchase price for the system is a key factor. Cost typically
has two major components: manufacturingcost includes the cost of components and
assembly; nonrecurring engineering (NRE) costs include the personnel and other
costs of designing the system.
#Physical size and weight: The physical aspects of the final system can vary greatly
depending upon the application. An industrial control system for an assembly line
may be designed to fit into a standard-size rack with no strict limitations on weight.
A handheld device typically has tight requirements on both size and weight that can
ripple through the entire system design.
#Power consumption: Power is important in battery-powered systems and is often
important in other applications as well. Power can be specified in the requirements
stage in terms of battery life—the customer is unlikely to be able to describe the
allowable wattage.

Validating a set of requirements is ultimately a psychological task since it requires
understanding both what people want and how they communicate those needs.

One good way to refine at least the user interface portion of a system’s requirements
is to build a mock-up.

 The mock-ups use canned data to simulate functionality in a restricted
demonstration, and it may be executed on a PC or a workstation.

 Mock-ups give the customer a good idea of how the system will be used and
how the user can react to it.

Physical, nonfunctional models of devices can also give customers a better idea of
characteristics such as size and weight.

Figure 1.2 above shows a sample requirements form that can be filled out at the start
of the project. We can use the form as a checklist in considering the basic
characteristics of the system. The entries in the form are:
#Name: This is simple but helpful. Giving a name to the project not only simplifies
talking about it to other people but can also crystallize the purpose of the machine.
#Purpose: This should be a brief one- or two-line description of what the system is
supposed to do. If you can’t describe the essence of your system in one or two lines,
chances are that you don’t understand it well enough.
#Inputs and outputs: These two entries are more complex than they seem.The inputs
and outputs to the system encompass a wealth of detail:
— Types of data: Analog electronic signals? Digital data? Mechanical inputs?
— Data characteristics: Periodically arriving data, such as digital audio samples?
Occasional user inputs? How many bits per data element?
— Types of I/O devices: Buttons? Analog/digital converters? Video displays?
#Functions: This is a more detailed description of what the system does. A good way
to approach this is to work from the inputs to the outputs: When the system receives
an input, what does it do? How do user interface inputs affect these functions? How
do different functions interact?
#Performance: Many embedded computing systems spend at least some time
controlling physical devices or processing data coming fromthe physical world. The
computations must be performed within a certain time frame. It is essential that the
performance requirements be identified early since they must be carefully measured
during implementation to ensure that the system works properly.
#Manufacturing cost: This includes primarily the cost of the hardware components.
A rough estimate on the cost should have some idea of the eventual cost range. Cost
has a substantial influence on architecture: A machine that is meant to sell at $10
most likely has a very different internal structure than a $100 system.
#Power: A rough idea of how much power the system can consume is very
important. Typically, the most important decision is whether the machine will be
battery powered or plugged into the wall. Battery-powered machines must be much
more careful about how they spend energy.

#Physical size and weight: Some indication of the physical size of the system will
guide certain architectural decisions. A desktop machine has much more flexibility in
the components used than, for example, a lapel mounted voice recorder.

After writing the requirements, we should check for internal consistency.

2 Specification
The specification is more precise—it serves as the contract between the customer
and the architects. As such, the specification must be carefully written so that it
accurately reflects the customer’s requirements and does so in a way that can be
clearly followed during design.

Characteristics of a good specification:
1) Meet system and customer requirements
2) Should be unambiguous
3) Should be clear and understandable
4) Should be complete

UML is the language that is widely used for describing specifications.

3 Architecture Design

 The specification only says what the system does, but does not say how the
system does things.

 The purpose of Architecture is to describe how the system implements those
functions.

 The architecture is a plan for the overall structure of the system that will be
used later to design the components that make up the architecture.

 The creation of the architecture is the first phase of design.

There are 2 major levels of architectural description.

First, high level block diagram as shown in Figure (a) below:

Figure 1.3 shows sample system architecture in the form of a block diagram that
shows major operations and data flows among them. This block diagram is still quite
abstract, and does not specify which operations will be performed by software
running on a CPU, what will be done by special-purpose hardware, and so on.
However, it describes how to implement the functions described in the specification.

After we have designed an initial architecture that is not biased toward too many
implementation details should we refine that system block diagram into 2 block
diagrams: one for hardware and another for software. These two more refined block
diagrams are shown in Figure 1.4. These include more details such as where units in
the software block diagram will be executed in the hardware block diagram and when
operations will be performed in time.

Architectural descriptions must be designed to satisfy both functional and
nonfunctional requirements. Not only must all the required functions be present, but
we must meet cost, speed, power, and other nonfunctional constraints.

Starting out with system architecture and refining that to hardware and software
architectures is one good way to ensure that we meet all specifications: We can
concentrate on the functional elements in the system block diagram, and then
consider the nonfunctional constraints when creating the hardware and software
architectures.

We must somehow be able to estimate the properties of the components of the block
diagrams, such as the search and rendering functions in the moving map system.
Accurate estimation derives in part from experience, both general design experience
and particular experience with similar systems. However, we can sometimes create
simplified models to help us make more accurate estimates. Sound estimates of all
nonfunctional constraints during the architecture phase are crucial, since decisions
based on bad data will show up during the final phases of design, indicating that we
did not meet the specification.

4 Designing Hardware and Software Components

The architectural description tells us what components we need. The component
design effort builds those components in conformance to the architecture and
specification.

The components will in general include both hardware—FPGAs, boards, and so on—
and software modules. Some of the components will be ready-made. The CPU, for
example, will be a standard component in almost all cases, as will memory chips and
many other components.

In GPS moving map, the GPS receiver is a good example of a specialized component
that will nonetheless be a predesigned, standard component.

We can also make use of standard software modules. One good example is the
topographic database. Standard topographic databases exist, and you probably want
to use standard routines to access the database—not only is the data in a predefined
format, but it is highly compressed to save storage. Using standard software for these
access functions not only saves us design time, but it may give us a faster
implementation for specialized functions such as the data decompression phase.

We have to design some components ourselves. Even if we are using only standard
integrated circuits, we may have to design the printed circuit board that connects
them. We have to do a lot of custom programming as well.

When creating these embedded software modules, we must make use of our expertise
to ensure that the system runs properly in real time and that it does not take up more
memory space than is allowed. The power consumption of the moving map software
example is particularly important.
We need to be very careful about how you read and write memory to minimize
power—for example, since memory accesses are a major source of power
consumption, memory transactions must be carefully planned to avoid reading the
same data several times.

5 System Integration
After the components are built, we need put them together and see the working
system. This phase is very critical, and usually consists of lot of bugs. Good planning
helps us find the bugs quickly. Building the system in phases and running properly
chosen tests can also find bugs more easily.

Only by fixing the simple bugs early will we be able to uncover the more complex or
obscure bugs that can be identified only by giving the system a hard workout. We
need to ensure during the architectural and component design phases that we make it
as easy as possible to assemble the system in phases and test functions relatively
independently.

System integration is difficult because it usually uncovers problems. It is often hard
to observe the system in sufficient detail to determine exactly what is wrong— the
debugging facilities for embedded systems are usually much more limited than what

you would find on desktop systems. As a result, determining why things do not stet
work correctly and how they can be fixed is a challenge in itself. Careful attention to
inserting appropriate debugging facilities during design can help ease system
integration problems, but the nature of embedded computing means that this phase
will always be a challenge.

b. CPSR format

How would the ARM status word be set after the operation: -4+5 ?
-4 in hex = 0xfffffffc
5 in hex = 0x5
-4+5 = 0xfffffffc+0x5=0x1 with a carry out = 1
Since we are adding a +ve and a –ve number, and getting a carry out, Carry flag
will be set.
N: 0
Z: 0
C: 1
V: 0

3.
a. Discuss the requirements chart, with an example.

Figure below shows a sample requirements form that can be filled out at the start
of the project. We can use the form as a checklist in considering the basic
characteristics of the system.

The entries in the form consist of the following:
#Name: This is simple but helpful. Giving a name to the project not only
simplifies talking about it to other people but can also crystallize the purpose of
the machine.

#Purpose: This should be a brief one- or two-line description of what the system
is supposed to do. If you can’t describe the essence of your system in one or two
lines, chances are that you don’t understand it well enough.
#Inputs and outputs: These two entries are more complex than they seem. The
inputs and outputs to the system encompass a wealth of detail:
— Types of data: Analog electronic signals? Digital data? Mechanical inputs?
— Data characteristics: Periodically arriving data, such as digital audio samples?
Occasional user inputs? How many bits per data element?
— Types of I/O devices: Buttons? Analog/digital converters? Video displays?
#Functions: This is a more detailed description of what the system does. A good
way to approach this is to work from the inputs to the outputs: When the system
receives an input, what does it do? How do user interface inputs affect these
functions? How do different functions interact?
#Performance: Many embedded computing systems spend at least some time
controlling physical devices or processing data coming from the physical world.
The computations must be performed within a certain time frame. It is essential
that the performance requirements be identified early since they must be carefully
measured during implementation to ensure that the system works properly.
#Manufacturing cost: This includes primarily the cost of the hardware
components. A rough estimate on the cost should have some idea of the eventual
cost range. Cost has a substantial influence on architecture: A machine that is
meant to sell at $10 most likely has a very different internal structure than a $100
system.
#Power: A rough idea of how much power the system can consume is very
important. Typically, the most important decision is whether the machine will be
battery powered or plugged into the wall. Battery-powered machines must be
much more careful about how they spend energy.
#Physical size and weight: Some indication of the physical size of the system will
guide certain architectural decisions. A desktop machine has much more
flexibility in the components used than, for example, a lapel mounted voice
recorder.

After writing the requirements internal consistency must be checked.
Example: Let us consider an example of GPS moving map system.

Initial List:
Functionality: This system is designed for highway driving and similar uses,
notnautical or aviation uses that require more specialized databases and functions.

The system should show major roads and other landmarksavailable in standard
topographic databases.
User interface: The screen should have at least 400_600 pixel resolution. The
device should be controlled by no more than three buttons. A menu system should
pop up on the screen when buttons are pressed to allow the user to make
selections to control the system.
#Performance: The map should scroll smoothly. Upon power-up, a display should
take no more than one second to appear, and the system should be able to verify
its position and display the current map within 15 s.
Cost: The selling cost (street price) of the unit should be no more than $100.
Physical size and weight: The device should fit comfortably in the palm of the
hand.
Power consumption: The device should run for at least eight hours on four AA
batteries.

Requirements Chart:

Name GPS moving map
Purpose Consumer-grade moving map for driving use
Inputs Power button, two control buttons
Outputs Back-lit LCD display 400 _ 600

Functions

Uses 5-receiver GPS system; three user-
selectable resolutions; always displays current
latitude and longitude

Performance
Updates screen within 0.25 seconds upon
movement

Manufacturing cost $30
Power 100mW

Physical size and weight No more than 2” _ 6, ” 12 ounces

b. ARM data Processing instruction format:

What is the meaning of these ARM condition codes: EQ, NE, MI, VS, GE, and LT? (3)

Code Meaning Flags Tested

EQ Equal. Z==1

NE Not equal. Z==0

CS or HS Unsigned higher or same (or carry set). C==1

CC or LO Unsigned lower (or carry clear). C==0

MI Negative. The mnemonic stands for "minus". N==1

PL Positive or zero. The mnemonic stands for "plus". N==0

VS Signed overflow. The mnemonic stands for "V set". V==1

VC No signed overflow. The mnemonic stands for "V clear". V==0

HI Unsigned higher. (C==1) && (Z==0)

LS Unsigned lower or same. (C==0) || (Z==1)

GE Signed greater than or equal. N==V

LT Signed less than. N!=V

GT Signed greater than. (Z==0) && (N==V)

LE Signed less than or equal. (Z==1) || (N!=V)

AL (or omitted) Always executed. None tested.

4.
a. Draw and explain the sequence diagram for transmitting control input in a model train

controller.
The role of the formatter during the panel’s operation is illustrated by the
sequence diagram below. The figure shows two changes to the knob settings:
first to the throttle, inertia, or emergency stop; then to the train number. The
panel is called periodically by the formatter to determine if any control
settings have changed. If a setting has changed for the current train, the
formatter decides to send a command, issuing a send-command behavior to
cause the transmitter to send the bits. Because transmission is serial, it takes
a noticeable amount of time for the transmitter to finish a command; in the
meantime, the formatter continues to check the panel’s control settings. If
the train number has changed, the formatter must cause the knob settings to
be reset to the proper values for the new train.

b. Write ARM assembly code to implement the following C assignment. (3)
 y=(a<<3) | (b&15);

ADR r4, a ; get address for a
LDR r0, [r4] ; get value of a

MOV r0, r0, LSL 3 ; perform shift
ADR r4, b ; get address for b
LDR r1, [r4] ; get value of b
AND r1, r1, #15 ; perform logical AND
ORR r1, r0, r1 ; compute final value of z
ADR r4, z ; get address for z
STR r1, [r4] ; store value of z

5.
a. Define Digital Command Control (DCC). Explain the conceptual specification of a model

train controller system. (7)

Digital Command Control (DCC) is a standard for a system to operate model
railways digitally. DCC specifies some important aspects of the system,
particularly those that allow equipment to interoperate. But DCC deliberately
does not specify everything about a model train control system.

The DCC standard is given in two documents:
#Standard S-9.1, the DCC Electrical Standard, defines how bits are encoded on
the rails for transmission.
#Standard S-9.2, the DCC Communication Standard, defines the packets that
carry information.

Conceptual Specification of model train controller:
A conceptual specification allows us to understand the system a little better.
We will use the experience gained by writing the conceptual specification to
help us write a detailed specification to be given to a system architect.

A train control system turns commands into packets. A command comes from
the command unit while a packet is transmitted over the rails. Commands and
packets may not be generated in a 1-to-1 ratio. Sometimes command units
should resend packets in case a packet is dropped during transmission.

There are two major subsystems in model train controller: the command unit
and the train-board component as shown in Figure 1.16. Each of these
subsystems has its own internal structure. The basic relationship between
them is illustrated in Figure 1.17, shown as a UML collaboration diagram. The
command unit and receiver are each represented by objects; the command
unit sends a sequence of packets to the train’s receiver, as illustrated by the
arrow. The notation on the arrow provides both the type of message sent and
its sequence in a flow of messages; since the console sends all the messages,
the arrow’s messages are numbered as 1…n. The messages are carried over
the track.

The command unit and receiver are further broken down into their major
components.
The console needs to perform three functions: read the state of the front
panel on the command unit, format messages, and transmit messages.
The train receiver must also perform three major functions: receive the
message, interpret the message (taking into account the current speed, inertia
setting, etc.) and actually control the motor.
The UML class diagram for the above is shown in Figure 1.18. The basic
characteristics of these classes are:
#The Console class describes the command unit’s front panel, which contains
the analog knobs and hardware to interface to the digital parts of the system.
#The Formatter class includes behaviors that know how to read the panel
knobs and creates a bit stream for the required message.
#The Transmitter class interfaces to analog electronics to send the message
along the track.

There will be one instance of the Console class and one instance of each of the
component classes, as shown by the numeric values at each end of the
relationship links. We have also shown some special classes that represent
analog components, ending the name of each with an asterisk:
#Knobs* describes the actual analog knobs, buttons, and levers on the control
panel.
#Sender* describes the analog electronics that send bits along the track.
Likewise, the Train makes use of three other classes that define its
components:
#The Receiver class knows how to turn the analog signals on the track into
digital form.
#The Controller class includes behaviors that interpret the commands and
figures out how to control the motor.
#The Motor interface class defines how to generate the analog signals
required control the motor.
We define two classes to represent analog components:

#Detector* detects analog signals on the track and converts them into digital
form.
#Pulser* turns digital commands into the analog signals required to control the
motor speed.
We have also defined a special class, Train set, to help us remember that the
system can handle multiple trains (up to t trains).

b. DCC standard: packets are prone to error

What is the impact of this problem?
Noise can cause errors in signals. This may lead to address/commands being misinterpreted. This
may lead to incorrect functioning of the model trains. Reliability of such a system is reduced.

Design a mechanism that should be part of the standard to overcome this limitation.

(This is an open-ended problem; hence solutions may vary).
Current DCC standard does not mandate error detection and correction. The new DCC standard
must mandate one or more of the standard error detection/ correction mechanism.
E.g. Design: ECC must be part of packet standard

6.
a. Differentiate between:

(i) Cache hit and cache miss with a neat diagram.
(ii) LDRH and LDRB of ARM instructions.

i. Cache hit and cache miss with a neat diagram.

Figure above shows how the cache support reads in the memory system. A cachecontroller
mediates between the CPU and the memory system comprised of themain memory.The cache
controller sends a memory request to the cache and mainmemory.

If the requested location is in the cache,the cache controller forwards thelocation’s contents to
the CPU and aborts the main memory request; this conditionis known as a cache hit.

If the location is not in the cache, the controller waits forthe value from main memory and
forwards it to the CPU; this situation is known asa cache miss.

ii. LDRH and LDRB of ARM instructions.
LDRH stands for Load Half-Word, where the instruction loads a half-word (16 bits) into the
specified register.
Example usage: LDRH R0, [R1, #0x18]
This instruction loads register R0 from address in memory given by value of R1, plus offset of 24
bytes. Only 2 bytes are loaded into low part of register which is then zero-extended to 32 bits.

LDRB stands for Load Byte, where the instruction loads one byte (8 bits) in to the specified
register. The three unused bytes in the word are zeroed upon loading.
Example Usage: LDRB R0, [R1, #0x18]
This instruction loads register R0 on bits 0 to 7 from address in memory given by value of R1, plus
offset of 24 bytes. The selected byte is placed in the bottom 8 bits of the destination register, and
the remaining bits of the register are filled with zeroes.

b. Write ARM assembly code to implement the following C assignment. (3)
 z = a*(b+c)-d*e;

ADR r4,b ; get address for b
LDR r0,[r4] ; get value of b
ADR r4,c ; get address for c
LDR r1,[r4] ; get value of c
ADD r2,r0,r1 ; compute partial result:(b+c)
ADR r4,a ; get address for a
LDR r0,[r4] ; get value of a
MUL r2,r2,r0 ; compute partial result: a*(b+c)
ADR r4,d ; get address for d
LDR r0,[r4] ; get value of d
ADR r4,e ; get address for e
LDR r1,[r4] ; get value of e
MUL r3,r0,r1 ; compute partial result: d*e
SUB r2, r2, r3 ; compute the final result
ADR r4,y ; get address for z
STR r2,[r4] ; store value of z at proper location

Analysis:
The above program uses 5 registers, r0-r4.
Optimization may yield the following (This is only one possibility. There
are other valid solutions):
ADR r4,b ; get address for b
LDR r0,[r4] ; get value of b
ADR r4,c ; get address for c
LDR r1,[r4] ; get value of c
ADD r0,r0,r1 ; compute partial result:(b+c)
ADR r4,a ; get address for a
LDR r1,[r4] ; get value of a
MUL r0,r0,r1 ; compute partial result: a*(b+c)

ADR r4,d ; get address for d
LDR r1,[r4] ; get value of d
ADR r4,e ; get address for e
LDR r2,[r4] ; get value of e
MUL r1,r1,r2 ; compute partial result: d*e
SUB r0, r0, r1 ; compute the final result
ADR r4,y ; get address for z
STR r0,[r4] ; store value of z at proper location

The above optimized program uses 4 registers, r0,r1,r2, and r4, one less
than the previous program.

7.
a. What is interrupt? Discuss its mechanism, with a neat diagram. (7)

Interrupt is a mechanism that allows a device to request service from the CPU. The
interrupt mechanism allows devices to signal the CPU and to forceexecution of a
particular piece of code. When an interrupt occurs, the program counter’s value is
changed to point to an interrupt handler routine (also commonly known as a device
driver) that takes care of the device: writing the next data, reading data that have
just become ready, and so on. The interrupt mechanism of course saves the value of
the PC at the interruption so that the CPU can return to the program that was
interrupted. Interrupts therefore allow the flow of control in the CPU to change
easily between different contexts, such as a foreground computation and multiple
I/O devices. To allow parallelism, we need to introduce interrupt mechanism into
the CPU.

In the following example, we repeatedly read a character from an input device and
write it to an output device. We assume that we can write C functions that act as
interrupt handlers. Those handlers will work with the devices in much the same way
as in busy-wait I/O by reading and writing status and data registers. The main
difference is in handling the output—the interrupt signals that the character is
done, so the handler does not have to do anything.
We will use a global variable achar for the input handler to pass the character to the
foreground program. Because the foreground program doesn’t know when an
interrupt occurs, we also use a global Boolean variable, gotchar, to signal when a
new character has been received. The code for the input and output handlers
follows:

void input_handler() { /* get a character and put in global */
achar = peek(IN_DATA); /* get character */
gotchar = TRUE; /* signal to main program */
poke(IN_STATUS,0); /* reset status to initiate next transfer */

}
void output_handler() { /* react to character being sent */
/* don't have to do anything */
}

The main program is reminiscent of the busy-wait program. It looks at gotchar to
check when a new character has been read and then immediately sends it out to the
output device.

main() {
while (TRUE) { /* read then write forever */

if (gotchar) { /* write a character */
poke(OUT_DATA,achar); /* put character in device */
poke(OUT_STATUS,1); /* set status to

initiate write */
gotchar = FALSE; /* reset flag */
}

}
}

It should be noted that the use of interrupts has made the main program somewhat
simpler. But this program design still does not let the foreground program do useful
work.

Interrupt based I/O programming with buffers:
This method is an extension of the interrupt based I/O programming. In this, we use
a more sophisticated program design to let the foreground program work
completely independently of input and output. This is achieved by using buffers.
The following example shows copying characters from input to output with
interrupts and buffers. Usage of buffers eliminated the need to wait for each
character. Rather than reading a single character and then writing it, the program
performs reads and writes independently. The read and write routines
communicate through the following global variables:

■ A character string io_buf will hold a queue of characters that have been
read but notyet written.
■ A pair of integers buf_start and buf_endwill point to the first and last
characters read.
■ An integer error will be set to 0 whenever io_buf overflows.

The global variables allow the input and output devices to run at different rates. The
queue io_buf acts as a wraparound buffer—we add characters to the tail when an
input is received and take characters from the tail when we are ready for output.
The head and tail wrap around the end of the buffer array to make most efficient
use of the array. Here is the situation at the start of the program’s execution, where
the tail points to the first available character and the head points to the ready
character. As seen below, because the head and tail are equal, we know that the
queue is empty.

When the first character is read, the tail is incremented after the character is added
to the queue, leaving the buffer and pointers looking like the following:

When the buffer is full, we leave one character in the buffer unused. As the next
figure shows, if we added another character and updated the tail buffer (wrapping it
around to the head of the buffer) we would be unable to distinguish a full buffer
from an empty one.

Here is what happens when the output goes past the end ofio_buf:

The following code provides the declarations for the above global variables and
some service routines for adding and removing characters from the queue. Because
interrupt handlers are regular code, we can use subroutines to structure code just
as with any program.

#define BUF_SIZE 8
char io_buf[BUF_SIZE]; /* character buffer */
intbuf_head = 0, buf_tail = 0; /* current position in
buffer */
int error = 0; /* set to 1 if buffer ever overflows */
void empty_buffer() { /* returns TRUE if buffer is empty */

buf_head == buf_tail;
}

void full_buffer() { /* returns TRUE if buffer is full */
(buf_tail+1) % BUF_SIZE == buf_head ;

}

intnchars() { /* returns the number of characters in the
buffer */

if (buf_head>= buf_tail) return buf_tail – buf_head;
else return BUF_SIZE + buf_tail – buf_head;

}

void add_char(char achar) { /* add a character to the buffer head */
io_buf[buf_tail++] = achar;
/* check pointer */
if (buf_tail == BUF_SIZE)

buf_tail = 0;
}

char remove_char() { /* take a character from the buffer head */
char achar;
achar = io_buf[buf_head++];
/* check pointer */
if (buf_head == BUF_SIZE)

buf_head = 0;
}

Assume that we have two interrupt handling routines defined in C, input_handler
for the input device and output_handler for the output device. These routines work
with the device in much the same way as did the busy-wait routines. The only
complication is in starting the output device: If io_buf has characters waiting, the
output driver can start a new output transaction by itself. But if there are no

characters waiting, an outside agent must start a new output action whenever the
new character arrives. Rather than force the foreground program to look at the
character buffer, we will have the input handler check to see whether there is only
one character in the buffer and start a new transaction.

Here is the code for the input handler:
#define IN_DATA 0x1000
#define IN_STATUS 0x1001
void input_handler() {

char achar;
if (full_buffer()) /* error */

error = 1;
else { /* read the character and update pointer */

achar = peek(IN_DATA); /* read character */
add_char(achar); /* add to queue */

}

poke(IN_STATUS,0); /* set status register back to 0 */
/* if buffer was empty, start a new output
transaction */

if (nchars() == 1) { /* buffer had been empty until this interrupt
*/

poke(OUT_DATA,remove_char()); /* send character */
poke(OUT_STATUS,1); /* turn device on */

}
}

#define OUT_DATA 0x1100
#define OUT_STATUS 0x1101
void output_handler() {

if (!empty_buffer()) { /* start a new character */
poke(OUT_DATA,remove_char()); /* send character */
poke(OUT_STATUS,1); /* turn device on */

}
}

The foreground program does not need to do anything—everything is taken
care of by the interrupt handlers. The foreground program is free to do useful
work as it is occasionally interrupted by input and output operations. The
following sample execution of the program in the form of a UML sequence
diagram shows how input and output are interleaved with the foreground
program. (We have kept the last input character in the queue until output is
complete to make it clearer when input occurs.) The simulation shows that
the foreground program is not executing continuously, but it continues to run

in its regular state independent of the number of characters waiting in the

queue.

b) How would the ARM status word be set after the operation: 2^31 - 1 + 1 ?(3)

2^31-1 in 32-bit hex = 0x7fffffff
+1 in 32-bit hex = 0x1
So, (2^31-1)+1 = 0x7fffffff + 0x1 = 0x80000000 = -2^31
Adding 2 positive numbers giving a negative number output, hence an
overflow. Since the result is negative, N will also be set.

N: 1
Z: 0
C: 0
V: 1

Supervisor Mode
Complex systems are often implementedas several programs that communicate
with each other. These programs may rununder the command of an operating
system. It may be desirable to provide hardwarechecks to ensure that the
programs do not interfere with each other—for example,by erroneously writing
into a segment of memory used by another program. Softwaredebugging is
important but can leave some problems in a running system;hardware checks
ensure an additional level of safety.In such cases it is often useful to have a
supervisor mode provided by theCPU. Normal programs run in user mode.
The supervisor mode has privilegesthat user modes do not. For example,
memory management systems allow the addresses of memory locations to be
changed dynamically.Control of the memory management unit (MMU) is
typically reserved forsupervisor mode to avoid the obvious problems that
could occur when programbugs cause inadvertent changes in the memory
management registers.

The ARMinstruction that puts the CPU in supervisor mode is called SWI:
SWI CODE_1

However, it canbe executed conditionally,as with anyARM instruction. SWI
causesthe CPU to go into supervisor mode and sets the PC to 0x08.The
argument to SWIis a 24-bit immediate value that is passed on to the supervisor
mode code; it allowsthe program to request various services from the
supervisor mode.

In supervisor mode, the bottom 5 bits of the CPSR are all set to 1 to
indicatethat the CPU is in supervisor mode. The old value of the CPSR just
beforethe SWIis stored in a register called the saved program status register
(SPSR). Thereare in fact several SPSRs for different modes; the supervisor
mode SPSR is referredto as SPSR_svc.To return from supervisor mode,the
supervisor restores the PC from register r14and restores the CPSR from
theSPSR_svc.

8.

a) Explain the following with diagram. (7) [*]

i. Direct-mapped cache

The simplest way to implement a cache is a direct-mapped cache, as
shownin Figure below. The cache consists of cache blocks, each of which
includes a tagto show which memory location is represented by this block,
a data field holdingthe contents of that memory, and a valid tag to show
whether the contents of thiscache block are valid. Anaddress is divided into
three sections. The index is usedto select which cache block to check. The
tag is compared against the tag valuein the block selected by the index. If
the address tag matches the tag value in theblock, that block includes the
desired memory location. If the length of the datafield is longer than the
minimum addressable unit, then the lowest bits of theaddress are used as an
offset to select the required value from the data field. Giventhe structure of
the cache, there is only one block that must be checked to seewhether a
location is in the cache—the index uniquely determines that block. Ifthe
access is a hit, the data value is read from the cache.Writes are slightly
morecomplicated than reads because we have to updatemain memory as
well as the cache. There are several methods by which we can dothis.The
simplest scheme is known as write-through—every write changes boththe
cache and the corresponding main memory location (usually through a
writebuffer). This scheme ensures that the cache and main memory are
consistent, butmay generate some additional mainmemory traffic.We can
reduce the number oftimeswe write to main memory by using a write-back
policy:Ifwe write only whenwe remove a location from the cache,we
eliminate the writes when a location iswritten several times before it is
removed from the cache.

The direct-mapped cache is both fast and relatively low cost, but it does
havelimits in its caching power due to its simple scheme for mapping the
cache ontomain memory. Consider a direct-mapped cache with four
blocks,in which locations0, 1, 2,and 3 all map to different blocks. But
locations 4, 8,12,…all map to the sameblock as location 0;locations 1, 5,
9,13,…all map to a single block;and so on. If twopopular locations in a
program happen to map onto the same block, we will notgain the full
benefits of the cache. This can create program performance problems.

ii. Set-associative cache

The limitations of the direct-mapped cache can be reduced by going to the
set-associative cache structure shown in Figure below.A set-associative cache
is characterizedby the number of banks or ways it uses, giving an n-way set-
associativecache.A set is formed by all the blocks (one for each bank) that
share the same index.Each set is implemented with a direct-mapped cache. A
cache request is broadcastto all banks simultaneously. If any of the sets has the
location, the cache reportsa hit. Although memory locations map onto blocks
using the same function, thereare n separate blocks for each set of locations.
Therefore, we can simultaneouslycache several locations that happen to map
onto the same cache block. Thesetassociativecache structure incurs a little
extra overhead and is slightly slower thana direct-mapped cache,but the higher
hit rates that it can provide often compensate.

The set-associative cache generally provides higher hit rates than the
directmappedcache because conflicts between a small number of locations can
beresolved within the cache. The set-associative cache is somewhat slower, so
theCPU designer has to be careful that it doesn’t slow down the CPU’s cycle
time toomuch.A more important problem with set-associative caches for
embedded programdesign is predictability. Because the time penalty for a
cache miss is so severe,weoften want to make sure that critical segments of our
programs have good behaviorin the cache. It is relatively easy to determine
when two memory locations will conflictin a direct-mapped cache. Conflicts in
a set-associative cache are more subtle,and so the behavior of a set-associative
cache is more difficult to analyzefor bothhumans and programs.

b. Consider the following C statement: x=a/b; There is an inherent problem in this piece of code. Test
this code to identify the problem and propose a solution in ARM assembly.

The code uses divide operation. The problem with the code is that when value of b=0, the divide
operation creates an exception (Div by 0 exception). Handling such exception depends on the
hardware implementation of the exception handling.
One way to handle the exception is to explicitly write an exception handler routine.

ADR r0,a ; get address for a
LDR r1,[r0] ; get value of a
ADR r0,b ; get address for b
LDR r2,[r0] ; get value of b
CMP r2, #0; compare if b==0
BZ Except;
DIV r1,r1,r2 ; compute result:x=a/b; b!=0
LDR r0, x;
STR r1, [r0];
.
.
.
Except:
<Exception handling code goes here>

