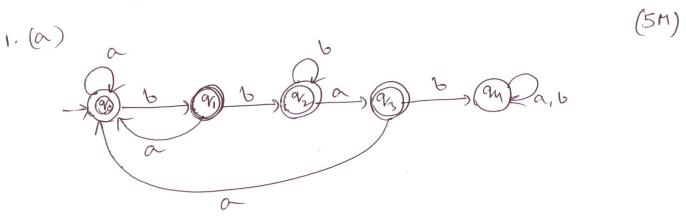
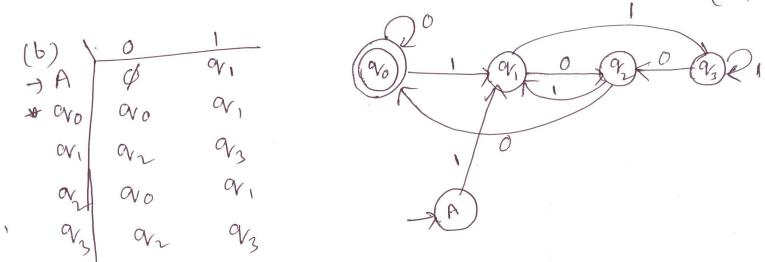
USN										
-----	--	--	--	--	--	--	--	--	--	--

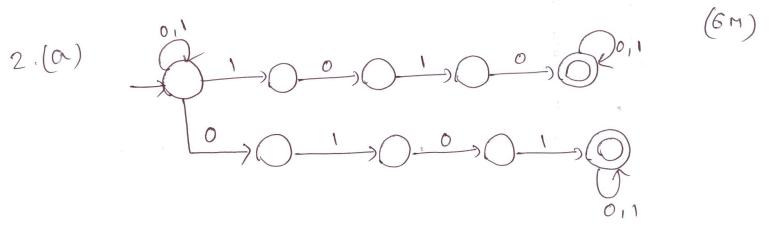
Internal Assessment Test 1 – Sept. 2017

			1110		Assessmen	it rest	1 - Sept. 20	1/				
Sub:	Automat	ta Theory and	d Computability				Sub Code:	15CS54	Branch	: ISE		
Date:	20/9/17Duration:90 min'sMax Marks:50Sem/Sec:5/ISE(A)							SE(A)		OBE		
			Answer an	ny FI	VE FULL Que	estions			Μ	[ARKS	СО	RBT
1 (a)	Design DFSM for the language $L=\{w \{a,b\}^* : w \text{ doesn't have bbab as substring}\}$									[05]	CO1	L3
(b)			or the languag							[05]	CO1	L3
2 (a)	Design a nondeterministic FSM for the language $L=\{w \{0,1\}^*: w \text{ contains both } 101 \text{ and } 010 \text{ as substrings}\}$								ooth	[06]	CO1	L3
(b)	Define the following terms with example. (i) Alphabet (ii) String (iii) Language (iv) Kleene Closure								age	[04]	CO1	L1
3 (a)	Conver	Convert the following NFA to DFA given in Table1 .							[06]	CO2	L3	
		a	b			a	b					
	Α	{A,B}	{C}		A	{A,B}	{C}	Ø				
	В	{A}	{B}		B	{A}	{B}	{A,C}				
	*C	{B,C}	{A,B}		*C	{B,C}	{A,B}	{B}				
		Table	1			r	Fable 2	·				
(b)	Write t	he differen	ce between D	FSN	A and NDFS	SM				[04]	CO2	L1
4 (a)	Conve	ert the -N	FA to DFA g	iven	in Table2					[06]	CO2	2 L3
(b)	Write	down the	applications o	f Fii	nite Automa	ita.				[04]	COI	L
5 (a)	-	•	Iachine to fin 1m as output.							[06]	CO2	2 L3

- (b) Design a Moore machine which will give output as '1' on every occurrence of the
- substring **'ab'**, otherwise **'0'**. Consider the 6 (a) Minimize the following DFA. Draw the minimized DFA.

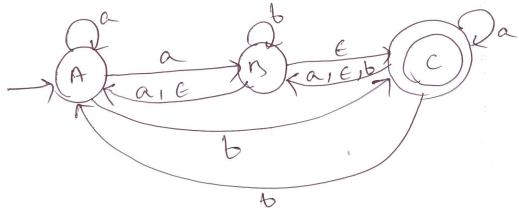

)	Minimize the following DFA. Draw the minimized DFA.								
	Input/	А	В	С	*D	E	F	G	Н
	State								
	0	В	А	D	D	D	G	F	G
	1	А	С	В	А	F	Е	G	D


- (b) Explain the term **'equivalence state'** and **'distinguishable state'**.
- 7 (a) Design a DFA for language $L=\{w \{a,b\}^*: w \text{ contains odd no. of } a's \text{ and odd no. of } b's\}$
 - (b) Design a DFA for language L={w $\{a,b\}$ *: N_a(w) mod 3=1 and N_b(w) mod 2=0 }


[06]	CO2	L3
[04]	CO1	L1
[06]	CO2	L3
[04]	CO2	L3
[07]	CO2	L3
[03]	CO2	L2
[05]	CO1	L3
[05]	CO1	L3

SCHEME & SOLUTION

Sub: Automata Theory & Computability (15CS54) Internel Assessment Test 1. - Sept. 2017


(b) <u>Alphabet</u>. (UXI)n Ot contains a finite set of imput symbols. Denoted by É. Sp &= {0,1} or &= {a,b}

 (\mathbf{U})

String
A string is a combination of symbols
from a perticular alphabet
$$\mathcal{Z}$$
.
See 9^{1} $\mathcal{K} = \{0,1\}$ then string is
 $\{0,1,00,01,10,11,010,110,--- \}$
Language
A language is a collection of strings
from a perticular alphabet which
satisfies some conditions.
See $L = \{ \text{ strings ending with 11} \}$
 $\{11,011,111,01011,--- \}$
kleene closure
 9^{1} is a collection of strings of
 2^{1} 2^{1} 2^{1} 2^{1} 2^{1} 2^{1} 2^{1} 2^{1} 2^{1} 2^{1}
 2^{1} 2^{1} 2^{1} 2^{1} 2^{1} 2^{1} 2^{1} 2^{1} 2^{1} 2^{1}
 2^{1} 2^{1}

(b) DESM
) It is defined by
stuples.
M=(K, E, S, S, A)
Where K is the set of
states
E is input alphabet
S: transition function
S: KXE
$$\rightarrow$$
K
S is start state.
A is finite set of
final states.

(6 M)

$$EULOSE(A) = \{A\}$$

$$EULOSE(B) = \{A|B,C\}$$

$$EULOSE(C) = \{A|B,C\}$$

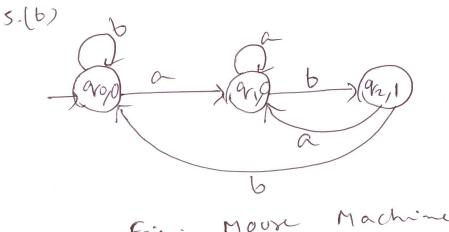


Fig: Mouse

$$\begin{array}{c} G_{-}(\alpha) & Partition 0 : \\ \left(A_{1}B_{1}C_{1}, E_{1}F_{1}A_{1}H \right) \\ \left(\begin{array}{c} P \end{array} \right) \\ G_{7} \\ G_{7} \\ \end{array} \end{array}$$

$$\begin{pmatrix} A_1 B_1 F_1 A_1 H \end{pmatrix} \begin{pmatrix} C_1 F_2 \end{pmatrix} \begin{pmatrix} D \end{pmatrix} \\ A_7 D_7 \end{pmatrix} \begin{pmatrix} A_7 D_7 & A_7 D_7 \\ A_7 D_7 & A_7 D_7 \end{pmatrix}$$

$$\frac{Partinin 3}{(A, F)} (A, F) (A)$$

$$\frac{(A, F)}{A \times 1} (A \times 1) (A)$$

$$\frac{(A, F)}{A \times 1} (A)$$

$$\frac{(A, F)}{A \times 1} (A)$$

$$7121$$

 214
 315
 452
 452
 515

 (c, ε) (\mathcal{D}) 685 624

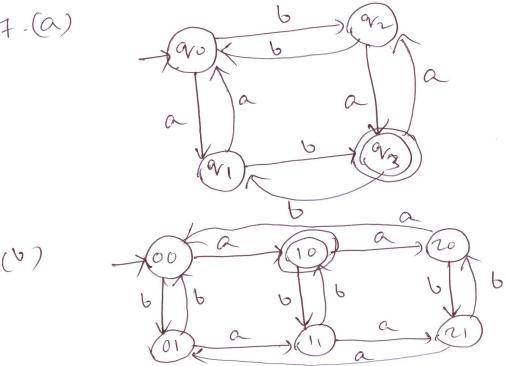
 (\mathcal{D})

(C, E)

(1)

683

E


(4n)

(7n)

Mignimized DFA Talle

(1.5x2=3M) (7) 6.(b) Equivalence state TWO states P & q are said to be equivalent rif to for some imput string L. 1 other to both PKQ are going to final states or both are going to non-tinal states. $ie | S(P, w) \in A$ and $S(P, w) \in A$ Distinguishable state TWO states PXQ are said to be dustingmishable if for any one input string "a", state P is going to final state & q is going to non final state, $ref S(P, a) \in A$ but $S(P, a) \notin A$ 08 ville versa. (5M)

