
USN

Internal Assessment Test 1 – Sept. 2017

Sub: Advanced Computer Architecture(ACA) Sub Code: 10CS74 Branch: CSE

Date: 21/9/2017 Duration: 90 min’s Max Marks: 50 Sem / Sec: VII/A,B,C OBE
Answer any FIVE FULL Questions

MARKS
CO RBT

1 Define the term CPI and derive the equation for finding the total processor clock cycles needed to
execute a program. Consider the execution of an object code with 200,000 instructions on a 20 MHZ
processor. The program consists of four major types of instruction. The instruction mix and number
of cycles (CPI) needed for each instruction is given below. i) Find total number of cycles required to
execute the program. ii) Calculate the average CPI when the program is executed on uniprocessor
system with above trace results. iii) Calculate the MIPS rate based on CPI obtained in ii.

No Instruction type CPI Instruction mix

1 Arithmetic and logic 1 68%

2 Load/store with cache hit 2 8%

3 Branch 4 14%

4 Memory reference with cache hit 8 10%

[10] CO1 L3

2 (a) Elaborate the different parameters that decide the cost of an IC. Give the equation of each parameter
separately and explain them.

[06] CO1 L2

(b) Find the die yield for the dies that are 1.5cm on a side and 1.0 cm on a side, assuming a defect
density of 0.4per cm2 and α is 4.

[04] CO1 L3

3 Define Computer Architecture and ISA. Explain seven dimensions of Instruction Set
Architecture (ISA).

[10] CO2 L1

4 (a) Briefly explain Amdahl’s law [06] CO1 L2
(b) Suppose that we want to enhance the processor used for Web serving. The new processor is 10

times faster on computation in the Web serving application than the original processor.
Assuming that the original processor is busy with computation 40% of the time and is waiting
for I/O 60% of the time, what is the overall speedup gained by incorporating the enhancement?

[04] CO1 L3

5 (a) List and explain four important technologies which have change at a dramatic pace and are
critical to modern implementation.

[05] CO1 L1

(b) Write short notes on benchmarks [05] CO1 L2

6 With a neat diagram explain the classic five stage pipeline for RISC processor [10] CO2 L2

7 (a) List three hazards in Pipelining. Explain any one hazard briefly with neat diagram [06] CO2 L2

(b) Consider the un-pipelined processor in the previous section. Assume that it has a 1 ns clock
cycle and that it uses 4 cycles for ALU operations and branches and 5 cycles for memory
operations. Assume that the relative frequencies of these operations are 40%, 20%, and 40%,
respectively. Suppose that due to clock skew and setup, pipelining the processor adds 0.2 ns of
overhead to the clock. Ignoring any latency impact, how much speedup in the instruction
execution rate will we gain from a pipeline?

[04] CO2 L3

8 Explain the basic MIPS pipeline with neat diagram [10] CO2 L2

Scheme

1. Definition of CPI (1 mark).

Derivation of equation for total processor clock cycles (3 marks).

Solving the problem (6 marks).

2. A) Impact of time, volume and commodification on cost of IC (2 marks).

Explain the Formula for cost of IC, Cost of die, Die yield and Dies per wafer (4 marks).

2. B) Formula (1 mark).

Solving the problem for die with 1.5cm side and 1 cm side (3 marks).

3. Define Computer Architechture (1 mark).

Define ISA (2 marks).

Explanation on Seven dimensions of ISA (7 marks).

4. A) Explanation and derivation of formula for speedup (6 marks).

4. B) Formula for speedup (1 mark).

Calculation of speedup (3 marks).

5. A) List all 4 technologies (1 mark).

Explain each technology (4 marks).

5. B) Define benchmark(1M)

Explanation on Desktop, Server, SPEC and TP benchmarks (4 marks)

6. Diagram of RISC pipeline (3 marks).

Explanation on 5-stage RISC pipeline (7 marks).

7. A) Listing the pipeline hazards (1 mark).

Explanation of the hazard (3 marks).

Diagram (2 marks).

7. B) Formula (1 mark)

Scheme and Solution : Internal Assessment Test 1 – Sept. 2017

Sub: Advanced Computer Architecture(ACA) Sub Code: 10CS74 Branch: CSE

Date: 21/9/2017 Duration: 90 min’s Max Marks: 50 Sem / Sec: VII/A,B,C

Calculation of average execution time for pipelined and un-pipelined (2 marks).

Calculation of Speedup (1 mark).

8. Diagram of MIPS pipeline (3 marks).

Explanation (7 marks).

Solution

1. In computer architecture, cycles per instruction (clock cycles per instruction, clocks per

instruction, or CPI) is one aspect of a processor's performance: the average number of clock

cycles per instruction for a program or program fragment. It is the multiplicative inverse

of instructions per cycle.

Essentially all computers are constructed using a clock running at a constant rate. These

discrete time events are called ticks, clock ticks, clock periods, clocks, cycles, or clock cycles.

Computer designers refer to the time of a clock period by its duration (e.g., 1 ns) or by its rate

(e.g., 1 GHz). CPU time for a program can then be expressed two ways:

CPU time = CPU clock cycles for a program * Clock cycle time

CPU time = CPU clock cycles for a program

Clock rate

If we know the number of clock cycles and the instruction count, we can calculate the

average number of clock cycles per instruction (CPI). Because it is easier to work with, and

because we will deal with simple processors in this chapter, we use CPI. Designers

sometimes also use instructions per clock (IPC), which is the inverse of CPI.

CPI is computed as

CPI =CPU clock cycles for a program

Instruction count(IC)

By transposing instruction count in the above formula, clock cycles can be defined as IC ×

CPI.

This allows us to use CPI in the execution time formula:

CPU time = Instruction count(IC) × Cycles per instruction × Clock cycle time

Hence the total processor clock cycles are given below

i) The formula for finding the total processor clock cycles is given below

CPU Clock cycles= [(68% * 200000) *1] + [(8% * 200000)*2] + [(14%*200000)*4]

+ [(10% * 200000)*8]

= 440000

ii) The formula for finding the total CPI is given below

CPI = ∑ Frequencyi * CPIi

Frequencyi = ICi / Instruction count

CPI = (0.68*1) + (0.08x2) + (0.14*4) + (0.1*8)

= 2.2

ii) The formula for finding the MIPS rate is given below

MIPS rate = clock rate / (CPI *106)

MIPS rate = (20*106) / (2.2* 106)

= 9.09

2. A) Typically IC is produced in large batches on a single wafer of EGS (Electronic Grade

Silicon) or other semiconductor through process such as photolithography. The wafer is cut

into many pieces each containing one copy of the circuit. Each of these pieces is called die. A

die is small block of semi conducting material on which a given functional circuit is

fabricated. Wafer provides the base for the IC. IC is mounted on wafer. Thus the cost of the

integrated circuit is given by the formula

Thus the cost of IC is dependent on cost of die, cost of testing die and cost of final

packaging. Final test yield is calculated as number of units which survived the testing

procedure divided by the total number of units tested.

The cost of die is calculated by the formula as given below

The cost of die is dependent on the cost of wafer, number of dies which will fit on a wafer

and also die yield. Die yield corresponds to percentage of good dies in the wafer. The

number of good dies per wafer is approximately the area of the wafer divided by the area of

the die. It is given as follows

The number of dies per wafer is approximately the area of the wafer divided by the area of

the die. The first term is the ratio of wafer area (πr2) to die area. The second term

compensates for rectangular dies near the periphery of round wafers. Dividing the

circumference (πd) by the diagonal of a square die is approximately the number of dies along

the edge.

However, this only gives the maximum number of dies per wafer. The critical question is:

What is the fraction of good dies on a wafer number, or the die yield? A simple model of

integrated circuit yield, which assumes that defects are randomly distributed over the wafer

and that yield is inversely proportional to the complexity of the fabrication process, leads to

the following.

Wafer yield accounts for wafers that are completely bad and so need not be tested. For

simplicity, we’ll just assume the wafer yield is 100%.Defects per unit area is a measure of the

random manufacturing defects that occur. Lastly, α is a parameter which is a measure of

manufacturing complexity.

2. B)

3. Definition of Computer Architecture: In computer engineering, computer architecture is a

set of rules and methods that describe the functionality, organization, and implementation of

computer systems.

Computer Architecture is the art of selecting and interconnecting hardware components to

create the computer that meets functional, performance and cost goals and formal modeling

of those systems.

Definition of ISA: Instruction set Architecture is the interface between the software and

hardware. ISA defines the instructions, data types, registers, addressing modes which are

visible to the programmer.

Seven dimensions of ISA

1. Class of ISA

2. Memory Addressing

3. Addressing modes

4. Type and size of operands

5. Operations

6. Control flow instruction

7. Encoding an ISA

Class of ISA

1. There are two important classes of GPR based ISA.

2. Register-memory ISA such as 80*86: Here one input operand (i.e. data or value) is in

register and other input operand in memory and after ALU operation result is stored in

register.

3. Load-store ISA such as MIPS: Here one input operand is in register and other input

operand is in register and result goes to register. To transfer the value to memory we need

to use load store instructions.

4. The 80*86 has16 general purpose registers and 16 floating point registers.

5. MIPS has 32 general purpose registers and 32 floating-point register.

Memory Addressing

1. The 80*86 and MIPS use byte addressing for accessing memory operands.

2. Byte addressing refers to architectures where data can be accessed 8 bits (1 Byte) at a

time. In some machines; accesses to objects larger than a byte must be aligned.

3. For MIPS the data is aligned and for 8086 data is misaligned.

4. An access to an object of size s bytes at byte address A is aligned if A mod s = 0.

Misalignment causes hardware complications.

Addressing modes

1. Addressing modes specify the address of a memory object. An addressing mode specifies

how to calculate the effective memory address of an operand by using information held in

registers and/or constants contained within a machine instruction or elsewhere.

2. MIPS addressing modes are Register, Immediate (for constants), and Displacement,

where a constant offset is added to a register to form the memory address. The 80x86

supports those three plus three variations of displacement: no register (absolute or direct

addressing mode), two registers (based indexed with displacement), two registers where

one register is multiplied by the size of the operand in bytes (based scaled index and

displacement)

Type and Size of Operands

1. Like most of the ISAs the 8086 and MIPS support operand size of 8-bit (ASCII

Character), 16-bit (Unicode character or half word), 32-bit (Integer or word), 64-bit

(Long or double word) and floating point in 32-bit (Single precision) and 64-bit (Double

precision).

2. The 80x86 also supports 80-bit floating point (extended double precision).

Operations

1. The general categories of operations are data transfer, arithmetic, logical, control, and

floating point operations.

2. The instructions for data transfer are LB,LW,SB,SW,SD etc.

3. The instructions for arithmetic operations are DADD,DADDI,DMUL,DDIV etc.

4. The instructions for control flow operations are BEQ,BNEZ etc.

Control Flow Instructions

1. Virtually all ISAs including 8086 and MIPS support conditional branches, unconditional

jumps, procedure calls, and returns.

2. There are some small differences. MIPS conditional branches (BE,BNE, etc.) test the

contents of registers, while the 80x86 branches (JE,JNE, etc.) test condition code bits set

as side effects of arithmetic/logic operations.

3. MIPS procedure call (JAL) places the return address in a register, while the 80x86 call

(CALLF) places the return address on a stack in memory.

Encoding an ISA

1. Encoding means converting the instruction into binary form. There are two types of

encoding 1) fixed length encoding 2) variable length encoding.

2. The MIPS has fixed length encoding and all instructions are 32-bit long.

3. While 8086 has Variable length encoding and instructions are ranging from 1-18 bytes, so

a program compiled for the 80x86 is usually smaller than the same program compiled for

MIPS.

4. A) The performance gain that can be obtained by improving some portion of a computer can

be calculated by Amdahl’s Law. Amdahl’s law defines the speedup that can be gained by

using a particular feature. Speedup is the ratio

Speedup = Performance for entire task using the enhancement

Performance for entire task without using the enhancement

Speedup = Execution time for entire task without using the enhancement

Execution time for entire task using the enhancement

Speedup tells how much faster a task will run using the computer with the enhancement as

opposed to the original computer.

Amdahl’s Law gives us a quick way to find the speedup from some enhancement, which

depends on two factors:

The fraction of the computation time in the original computer that can be converted to take

advantage of the enhancement—For example, if 20 seconds of the execution time of a

program that takes 60 seconds in total can use an enhancement, the fraction is 20/60. This

value, which we will call Fractionenhanced, is always less than or equal to 1.

The improvement gained by the enhanced execution mode; that is, how much faster the task

would run if the enhanced mode were used for the entire program—This value is the time of

the original mode over the time of the enhanced mode. If the enhanced mode takes, say, 2

seconds for a portion of the program, while it is 5 seconds in the original mode, the

improvement is 5/2. We will call this value, which is always greater than 1, Speedupenhanced.

The overall speedup is the ratio of the execution times:

4. B)

5. A) Four implementation technologies, which change at the dramatic pace, are as follows.

 Integrated Circuit logic technology: An integrated circuit or monolithic integrated

circuit is a set of electronic circuits on one small plate ("chip") of semiconductor

material, normally silicon. Also thousands and millions of tiny registers, capacitors

and transistors are fabricated in IC. Transistor density increases by about 35% per

year, quadrupling in somewhat over four years. Increases in die size are less

predictable and slower, ranging from 10% to 20% per year.

 Semiconductor DRAM: It is used for main memory and is very cheap. It contains

many memory cells and each contains one transistor and capacitor to store 1 bit of

data. Capacity increases by about 20 to 40% per year, doubling roughly every two

years.

 Magnetic Disk technology: Examples of magnetic storage media include floppy

disks, hard disks, hard drives, magnetic recording tape, and magnetic stripes on credit

cards. Prior to 1990, density increased by about 30% per year, doubling in three

years. It rose to 60% per year thereafter, and increased to 100% per year in 1996.

Since 2004, it has dropped back to 30% per year. Disks are still 50–100 times cheaper

per bit than DRAM.

 Network technology: Network performance depends on the performance of switches

and on performance of transmission system. A network switch connects devices

together on a computer network and uses packet switching to receive, process and

forward data to the destination device. The most useful LAN technology is Ethernet.

Table below shows different Ethernet standards.

For all the technologies the cost decreases at about the rate at which density increases.

5. B) Benchmark is a standard which forms the basis of measurement and through which the

performance of others could be judged. The best choice of benchmark to measure the

performance is the compiler itself. If we consider smaller programs as benchmarks but it will

have many pitfalls. Examples include

 Kernels which are small, key pieces of real applications. Example: Livermore loops,

LINPACK.

 Toy programs, which are 100 line programs for example: quick sort

 Synthetic benchmarks, which are fake programs invented to try to match the profile and

behavior of real applications, such as Dhrystone.

Thus nowadays various benchmark suites are available to measure the performance for

variety of systems. Nonetheless, a key advantage of such suites is that the weakness of any

one benchmark is lessened by the presence of the other benchmarks.

 Desktop benchmarks divide into two broad classes: processor-intensive benchmarks and

graphics-intensive benchmarks.

 SPEC originally created a benchmark set focusing on processor performance (initially

called SPEC89), which has evolved into its fifth generation: SPEC CPU2006, which

follows SPEC2000, SPEC95, SPEC92, and SPEC89.

 SPEC benchmarks are real programs modified to be portable and to minimize the effect

of I/O on performance.

 The simplest benchmark used here is processor throughput benchmark. For example :

SPECCPU2000 is a processor throughput benchmark which is used to measure the

processing rate by running the multiple copies of each SPEC CPU benchmark on

multiple processors.

 Transaction-processing (TP) benchmarks measure the ability of a system to handle

transactions, which consist of database accesses and updates. Airline reservation systems

and bank ATM systems are typical simple examples of TP systems in which this

benchmark is needed.

6. Classic five stage pipeline for RISC processor

 Every instruction in the RISC can be implemented in 5 clock cycles. The five clock

cycles are IF, ID, EX, MEM and WB.

 Although each instruction will take 5 clock cycles for its execution the hardware will

initiate a new instruction in every clock cycle and will be executing some part of

different instructions.

 The basic RISC pipeline is shown below. On each clock cycle another instruction is

fetched and begins its 5-cycle execution.

 But the overlapped execution of multiple instructions inside the pipeline should not

introduce new type of conflicts.

 Hence to avoid conflicts three methods are used in a pipeline.

 First we separate the instruction and data memory which we would typically implement

with separate instruction and data caches. The use of separate caches eliminates a

conflict for a single memory that would arise between IF(Instruction Fetch) stage and

memory access(MEM) stage.

 Second the register file is used in two stages one for reading in ID and one for writing in

WB. Thus to handle reading and writing to same register perform the register write in

first half of the clock cycle and register read in the second half of the clock cycle. It is

indicated by solid and dashed lines in the figure given below.

 Figure shows the pipeline and abbreviation IM is used for instruction memory and DM

for data memory and CC for clock cycle.

 The PC should be updated to start the execution of the new instruction in every clock

cycle. PC points to the address of the next instruction to be fetched for execution. But

for branches the PC is not changed until ID stage and it causes problem.

 Also pipeline registers are present between the successive stages of the pipeline so that

all the results from a given stage are stored into register that is used as the input to the

next stage on the next clock cycle.

 For example: The result of the ALU operation is computed during the EX stage, but not

actually stored until WB, it arrives there by passing through two pipeline registers. The

pipeline registers are named as IF/ID, ID/EX, EX/MEM and MEM/WB.

7. A) There are three type of Hazards

Structural Hazard

Data Hazard

Branch Hazard

Data Hazard

Data hazard occurs when one instruction is dependent on the result produced by the other

instruction.

Data hazards occur when the pipeline changes the order of read/write accesses to operands so

that the order differs from the order seen by sequentially executing instructions on an

unpipelined processor. Consider the pipelined execution of these instructions:

DADD R1,R2,R3

DSUB R4,R1,R5

AND R6,R1,R7

OR R8,R1,R9

XOR R10,R1,R11

All the instructions after the DADD use the result of the DADD instruction i.e. R1. As shown

in Figure the DADD instruction writes the value of R1 in the WB pipe stage, but the DSUB

instruction reads the value during its ID stage. This problem is called a data hazard.

The AND instruction is also affected by this hazard. As we can see from Figure, the write of
R1 does not complete until the end of clock cycle 5. Thus, the AND instruction that reads the
registers during clock cycle 4 will receive the wrong results.

The XOR instruction operates properly because its register read occurs in clock cycle 6, after
the register write. The OR instruction also operates without incurring a hazard because we
perform the register file reads in the second half of the cycle and the writes in the first half.

7. B)

8. A Basic Pipeline for MIPS

 In this implementation there are four pipeline registers namely IF/ID, ID/EX, EX/MEM

and MEM/WB between different pipe stages. Instruction Memory contains the set of

instructions which should be fetched for execution. After fetching the instruction is

copied in IR. The registers are labeled with the names of the stages they connect. All of

the registers needed to hold values temporarily between clock cycles within one

instruction are subsumed into these pipeline registers. The pipeline registers carry both

data and control from one pipeline stage to the next.

 The data is copied from one pipeline register to another until it is no longer needed. The

value of PC is incremented by 4 in IF stage. The selection multiplexer in the IF stage

selects the value of PC. Thus if the instruction is branch instruction it selects the PC of

branch target address else it selects PC + 4.

• The zero test in EX stage is testing if the value of register is equal to zero.

• If the branch is taken branch then the PC is updated in EX stage and written in MEM

cycle.

• Thus the branch instruction has penalty of 3 clock cycles which can be reduced by

computing the PC earlier in the pipeline

• The two multiplexers in the EX stage are set depending on the instruction type.

• The top ALU input multiplexer is set by whether the instruction is a branch or not, and

the bottom multiplexer is set by whether the instruction is a register-register ALU

operation or any other type of operation

• The multiplexer in the IF stage chooses whether to use the value of the incremented PC

or the value of the EX/MEM.ALUOutput (the branch target) to write into the PC. This

multiplexer is controlled by the field EX/MEM.cond. Also EX/MEM.cond is set to 1 if

the branch is taken branch.

• The fourth multiplexer is controlled by whether the instruction in the WB stage is a load

or an ALU operation.

• Notice in figure below that we have made two important changes, each of which removes

1 cycle from the 3-cycle stall for branches.

• The first change is to move both the branch-target address calculation and the branch

condition decision to the ID cycle.

• The second change is to write the PC of the instruction in the IF phase, using either the

branch-target address computed during ID or the incremented PC computed during IF.

• Computing the branch-target address during ID requires an additional adder. With the

separate adder and a branch decision made during ID, there is only a 1- clock-cycle stall

on branches

	ACA_QP_IAT1 - RESHMA PRAKASH.pdf
	ACA_QP_IAT1_solution - RESHMA PRAKASH.pdf

