

USN

Internal Assessment Test 2 – Nov. 2017

Sub: DATABASE MANAGEMENT SYSTEM Sub Code: 15CS53 Branch: CSE

Date: 08/11/2017 Duration: 90 min’s Max Marks: 50 Sem / Sec: 5 / CSE- A,B,C OBE

Answer any 5 full questions. MARKS CO RBT

1 Explain informal design guidelines for relation schemas. [10] CO4 L2

2 Explain with an example, the basic constraints that can be specified, when you create a table in
SQL.

[10] CO3 L2

3 Consider the following relation for published books:
BOOK(BookTitle, AuthorName, BookType, ListPrice, AuthorAffiliation, Publisher)
Suppose the following dependencies exist:
BookTitle → BookType, Publisher
BookType → ListPrice
AuthorName → AuthorAffiliation
Find the key in this relation and normalize it upto 3NF

[10] CO4 L3

4 a) What is a view? Explain how to create the view and how view can be dropped? Discuss
view update.

b) What is a trigger? How is it defined in SQL?Explain with examples

[5]

 [5]

CO3 L2

5 EMP(Fname,Lname,SSN,Bdate,Address,Sex,Salary,SuperSSN,DNo)

DEPT(Dname,Dnumber,MgrSSN,Mgrstartdate)
DEPTLOC(Dnumber,Dloc)
PROJECT(Pname,Pnumber,Ploc,Dnum)
WORKS-ON(ESSN,PNO,Hours)

DEPENDENT(ESSN,DepnName,Sex,Relationship)
For the above schema, Write SQL Queries for the following questions:

a) Retrieve number of dependents for the employee 'Ram'.
b) Retrieve name and address of all employees who work for the 'CSE' department.
c) List female employees who are from ‘Bangalore’.
d) Retrieve the names of all employees who do not have supervisors.
e) Show the resulting salaries if every employee working on the ‘ProductX’ project is given a

10% raise.

[10] CO3 L3

6 a) What is a Functional dependency? Explain with example. List the Inference rules for

functional dependencies.
b) Consider R = (A B C D E F) and Functional dependencies F = {A→BC, C→E, CD→EF} Show

that AD→F Explain the following

[10] CO2 L3

7.

a) Explain stored procedures with example.
c) Explain JDBC classes and interfaces

[10] CO3 L2

SOLUTION

1 Explain informal design guidelines for relation schemas.
GUIDELINE 1: Design a relation schema so that it is easy to explain its meaning. Do not combine attributes from multiple

entity types and relationship types into a single relation. Intuitively, if a relation schema corresponds to one entity type or
one relationship type, the meaning tends to be clear.
GUIDELINE 2: Design the base relation schemas so that no insertion, deletion, or modification anomalies are present in the
relations. If any anomalies are present, note them clearly and make sure that the programs that update the database will
operate correctly.

GUIDELINE 3: As far as possible, avoid placing attributes in a base relation whose values may frequently be null. If nulls are
unavoidable, make sure that they apply in exceptional cases only and do not apply to a majority of tuples in the relation.
Having too many Null values can be waste space at the storage level and may also lead to problems with understanding the
meaning of the attributes and with specifying JOIN operations at the logical level. Another problem with nulls is how to
account for them when aggregate operations such as COUNT or SUM are applied. Moreover, nulls can have multiple
interpretations.
GUIDELINE 4: Design relation schemas so that they can be JOINed with equality conditions on attributes that are either
primary keys or foreign keys in a way that guarantees that no spurious tuples are generated. Do not have relations that
contain matching attributes other than foreign key-primary key combinations. If such relations are unavoidable, do not join
them on such attributes, because the join may produce spurious tuples.

2 Explain with an example, the basic constraints that can be specified, when you create a table in SQL.
The basic constraints that can be specified when you create a table in SQL are:

 Not Null

 Unique

 Default

 Primary Key

 Foreign Key

 Check

Not Null: By default, a column can hold NULL values. If you do not want a column to have a NULL value, then you need to
define such constraint on this column specifying that NULL is now not allowed for that column.
Unique: The UNIQUE Constraint prevents two records from having identical values in a particular column.

Default: The DEFAULT constraint provides a default value to a column when the INSERT INTO statement does not provide a
specific value.
Primary Key: A primary key is a single field or combination of fields that uniquely identify a record. The fields that are part
of the primary key cannot contain a NULL value and must be Unique. Each table should have a primary key, and each table

can have only ONE primary key.
Foreign Key: A foreign key is a key used to link two tables together. Foreign Key is a column or a combination of columns
whose values match a Primary Key of another table. The relationship between 2 tables matches the Primary Key in one of
the tables with a Foreign Key in the second table.
Example:
CREATE TABLE EMPLOYEE
(
SSN NUMBER(10) PRIMARY KEY,
NAME VARCHAR(10) NOT NULL,
PHONE NUMBER(10) UNIQUE,
AGE NUMBER(2) CHECK AGE>16,
SALARY NUMBER(5) DEFAULT 10000,
DEPTNO NUMBER(2) REFERENCES DEPARTMENT(DNO)
)

3 Consider the following relation for published books:
BOOK(BookTitle, AuthorName, BookType, ListPrice, AuthorAffiliation, Publisher)

Suppose the following dependencies exist:
BookTitle → BookType, Publisher
BookType → ListPrice

AuthorName → AuthorAffiliation
Find the key in this relation and normalize it upto 3NF

Key: (BookTitle and AuthorName)

The relation is in 1NF and not in 2NF as no attributes are fully functionally dependent on the key(BookTitle and

AuthorName). It is also not in 3NF.
2NF decomposition:
• Book1(BookTitle, AuthorName)

• Book2(BookTitle, BookType, ListPrice, Publisher)

• Book3(AuthorName, AuthorAffiliation)

The relations are not in 3NF because:
• BookTitle —-> BookType—-> ListPrice
Thus, BookType is neither a key itself nor a subset of a key and ListPrice is not a prime attribute. The 3NF decomposition
will eliminate the transitive dependency of Listprice.
3NF decomposition:
• Book1(BookTitle, AuthorName)
• Book2A(BookTitle, BookType, Publisher)

• Book2B(BookType, ListPrice)
• Book3(AuthorName, AuthorAffiliation)

4 a) What is a view? Explain how to create the view and how view can be dropped? Discuss view update.
A view refers to a single virtual table that is derived from other tables

Eg:
CREATE VIEW WORKS_ON1

AS SELECT FNAME, LNAME, PNAME, HOURS
FROM EMPLOYEE, PROJECT, WORKS_ON

WHERE SSN=ESSN AND PNO=PNUMBER

CREATE VIEW DEPT_INFO(DEPT_NAME, NO_OF_EMPLS, TOTAL_SAL)
AS SELECT DNAME, COUNT(*), SUM(SALARY)
FROM DEPARTMENT, EMPLOYEE

WHERE DNUMBER=DNO GROUP BY DNAME

A View is always up to date; A view is realized at the time we specify(or execute) a
query on the view

DROP VIEW WORKS_ON1: TO DROP A VIEW.

Updating of Views Updating the views can be complicated and ambiguous In general, an update on a view on defined
on a single table w/o any aggregate functions can be mapped to an update on the base table.

 A view with a single defining table is updatable if we view contain PK or CK of the base table

 View on multiple tables using joins are not updatable

 View defined using grouping/aggregate are not updatable

b) What is a trigger? How is it defined in SQL?Explain with examples

Trigger is used to specify automatic actions that the database system will perform when certain events and
conditions occur.

 A typical trigger which is regarded as an ECA (Event, Condition, Action) rule has three components:
i)The event(s): These are usually database update operations that are explicitly applied to the database. These events
are specified after the keyword BEFORE in our example, which means that the trigger should be executed before the
triggering operation is executed. An alternative is to use the keyword AFTER, which specifies that the trigger should

be executed after the operation specified in the event is completed.
ii) The condition that determines whether the rule action should be executed: Once the triggering event has
occurred, an optional condition may be evaluated.
iii) The action to be taken: The action is usually a sequence of SQL statements, but it could also be a database
transaction or an external program that will be automatically executed.

Eg:
CREATE TRIGGER SALARY_VIOLATION
BEFORE INSERT OR UPDATE OF SALARY, SUPERVISOR_SSN
 ON EMPLOYEE

FOR EACH ROW
 WHEN (NEW.SALARY > (SELECT SALARY FROM EMPLOYEE
WHERE SSN = NEW.SUPERVISOR_SSN))

INFORM_SUPERVISOR(NEW.Supervisor_ssn, NEW.Ssn);

5 EMP(Fname,Lname,SSN,Bdate,Address,Sex,Salary,SuperSSN,DNo)
DEPT(Dname,Dnumber,MgrSSN,Mgrstartdate)
DEPTLOC(Dnumber,Dloc)
PROJECT(Pname,Pnumber,Ploc,Dnum)

WORKS-ON(ESSN,PNO,Hours)
DEPENDENT(ESSN,DepnName,Sex,Relationship)
For the above schema, Write SQL Queries for the following questions:

a) Retrieve number of dependents for the employee 'Ram'.
SELECT E.SSN, COUNT(D.Dependent_name)FROM EMPLOYEE E, DEPENDENT D WHERE

E.SSN=D.ESSN AND E.Fname=’Ram’ GROUP BY E.SSN;
b) Retrieve name and address of all employees who work for the 'CSE' department.

SELECT Fname, Lname, Address FROM EMPLOYEE E, DEPARTMENT D WHERE E.Dno =

D.Dnumber AND D.Dname = ‘CSE’;
c) List female employees who are from ‘Bangalore’.

SELECT Fname, Lname FROM EMPLOYEE WHERE Sex=’F’ AND Address LIKE

‘%Bangalore%’;

d) Retrieve the names of all employees who do not have supervisors.
SELECT Fname, Lname FROM EMPLOYEE WHERE SUPER_SSN IS NULL;

e) Show the resulting salaries if every employee working on the ‘ProductX’ project is given a 10% raise.
SELECT E.SSN, Salary*1.1 FROM EMPLOYEE E, WORKS_ON W, PROJECT P

WHERE E.SSN=W.ESSN AND W.Pno=P.Pnumber AND P.Pname = ‘ProductX’;

6 a)What is a Functional dependency? Explain with example. List the Inference rules for functional dependencies.

A functional dependency, denoted by X → Y, between two sets of attributes X and Y that are subsets of R specifies a
constraint on the possible tuples that can form a relation state r of R. The constraint is that, for any two tuples t1 and

t2 in r that have t1[X] = t2[X], they must also have t1[Y] = t2[Y].

In the above table, the following FDs may hold because the four tuples in the current extension have no violation of
these constraints: B → C; C → B; {A, B} → C; {A, B} → D; and {C, D} → B. However, the following do not hold because

we already have violations of them in the given extension: A → B (tuples 1 and 2 violate this constraint); B → A (tuples
2 and 3 violate this constraint); D → C (tuples 3 and 4 violate it).

Inference Rules:

b)Consider R = (A B C D E F) and Functional dependencies F = {A→BC, C→E, CD→EF} Show that AD→F Explain the
following

7.

a) Explain stored procedures with example.
Database stored procedures and SQL/PSM

 Persistent procedures/functions (modules) are stored locally and executed by the database server. As

opposed to execution by clients.

 Advantages: If the procedure is needed by many applications, it can be invoked by

 any of them (thus reduce duplications)

 Execution by the server reduces communication costs

 Enhance the modeling power of views

 Disadvantages: Every DBMS has its own syntax and this can make the system less portable

A stored procedure EXAMPLE
CREATE PROCEDURE procedure-name (params)
local-declarations

procedure-body;
A stored function

CREATE FUNCTION fun-name (params)
RETRUNS return-type
local-declarations function-body;

Calling a procedure or function: CALL procedure-name/fun-name (arguments);
E.g.,

CREATE FUNCTION DEPT_SIZE (IN deptno INTEGER)
RETURNS VARCHAR[7]
DECLARE TOT_EMPS INTEGER;
SELECT COUNT (*) INTO TOT_EMPS
FROM SELECT EMPLOYEE

WHERE DNO = deptno;
IF TOT_EMPS > 100

 THEN RETURN ―HUGE
ELSEIF TOT_EMPS > 50

 THEN RETURN ―LARGE
ELSEIF TOT_EMPS > 30

 THEN RETURN ―MEDIUM
ELSE RETURN SMALL
ENDIF

b) Explain JDBC classes and interfaces

JDBC Driver Management

 All drivers are managed by the DriverManager class
 Loading a JDBC driver:

 In the Java code:

Class.forName(“oracle/jdbc.driver.Oracledriver”);

 When starting the Java application:
-Djdbc.drivers=oracle/jdbc.driver

 Connections in JDBC

 We interact with a data source through sessions. Each connection identifies a logical session.
 JDBC URL:

jdbc:<subprotocol>:<otherParameters>
 Example:

 String url=“jdbc:oracle:www.bookstore.com:3083”;
 Connection con;
 try{
 con = DriverManager.getConnection(url,usedId,password);

 } catch SQLException excpt { …}

 Executing SQL Statements

 Three different ways of executing SQL statements:
 Statement (both static and dynamic SQL statements)
 PreparedStatement (semi-static SQL statements)
 CallableStatment (stored procedures)

 PreparedStatement class:
Precompiled, parametrized SQL statements:

 Structure is fixed
 Values of parameters are determined at run-time

 Resultsets
 PreparedStatement.executeUpdate only returns the number of affected records

 PreparedStatement.executeQuery returns data, encapsulated in a ResultSet object (a cursor)
 ResultSet rs=pstmt.executeQuery(sql);
 // rs is now a cursor
 While (rs.next()) {

 // process the data
 }

