
OBJECT ORIENTED MODELING AND DESIGN 10CS71 ISE VII / A & B

1 (a) Consider a physical bookstore, such as

in a shopping mall:

i) List three actors that are involved in the

design of a checkout system.

Explain the relevance of each actor.

ii) One use case is the purchase of items.

List another use case at a comparable level of

abstraction. Summarize purpose of each use

case with a sentence.

iii) Prepare use case diagram for a physical

bookstore checkout system.

 (b) Write scenarios for the following

situations:

 Moving a bag of corn, a goose and a fox

across a river in a boat. Only one thing may be

carried in the boat at a time. If the goose is left

alone with the corn, the corn will be eaten. If

the goose is left alone with the fox, the goose

will be eaten. Prepare 2 scenarios, one in which

something gets eaten and one in which

everything is safely transported across the river.

a. Assume that everything starts out on the east side

and is to be moved to the west side. A

scenario in which nothing gets eaten:

(Farmer, fox, goose, corn all on W.)

Farmer takes goose to E.

Farmer returns alone to W.

Farmer takes fox to E.

Farmer takes goose to W.

Farmer takes corn to E.

Farmer returns alone to W.

Farmer takes goose to E.

(Farmer, fox, goose, corn all on E.)

A scenario in which something gets eaten:

(Farmer, fox, goose, corn all on W.)

Farmer takes goose to E.

Farmer returns alone to W.

Farmer takes corn to E.

Farmer returns alone to W.

Goose eats corn.

Farmer takes fox to E.

(Farmer, fox, goose on E. Corn is gone.)

2 (a) How are global resources handled while

designing a system and how are boundary

conditions handled?

Handling Global Resources

 The system designer must identify global resources and determine

mechanisms for controlling access to them.

 Kinds of global resources:

– Physical units

Processors, tape drivers…

- Spaces

Disk spaces, workstation screen…

- Logical name

Object ID, filename, class name

- Access to shared data

Database

Handling Global Resources

ATM example

 Bank codes and account numbers are global resources.

 Bank codes must unique within the context of a

consortium.

 Account codes must be unique within the context of a

bank.

OBJECT ORIENTED MODELING AND DESIGN 10CS71 ISE VII / A & B

Handling Boundary Conditions

 Most of system design is concerned with steady-state

behaviour, but boundary conditions are also important

 Boundary conditions are

– Initialization

– Termination

– Failure

Handling Boundary Conditions

Initialization

The system must initialize constant data, parameters, global

variables, …

Termination

Release any external resources that it had reserved.

Failure

Unplanned termination of a system. The good system designer

plans for orderly failure

3 (a) With suitable examples, explain

different use case relationships.

Use Case Relationships
Complex use cases can be built from smaller pieces
with the include, extend and generalization
relationships.

1. Include Relationship:

The include relationship incorporates one use case
within the behavior sequence of another use case .

The UML notation for an include relationship is a
dashed arrow from source (including) to target
(included) use case.

The keyword <<include>> annotates the arrow.

Advanced State Modeling/Ch 6 06CS71/OOMD 6.1

Figure shows an example from an online stock brokerage system.

Advanced State Modeling/Ch 6 06CS71/OOMD 6.78

2. Extend Relationship
 The extend relationship is like an include relationship

looked at from the opposite direction, in which the
extension adds itself to the base rather than the base
explicitly incorporating the extension.

 The UML notation is dashed arrow from extension use
case to the base case. The keyword <<extend>>
annotates the arrow.

Advanced State Modeling/Ch 6 06CS71/OOMD 6.79

Advanced State Modeling/Ch 6 06CS71/OOMD 6.80

OBJECT ORIENTED MODELING AND DESIGN 10CS71 ISE VII / A & B

3.Generaliztion: A parent use case represents a general behavior and child use

cases add variations analogous to generalization among classes

Advanced State Modeling/Ch 6 06CS71/OOMD 6.81

Advanced State Modeling/Ch 6 06CS71/OOMD 6.82

 (b) What are the guidelines for sequence

models?

Guidelines
 Prepare at least one scenario per use case

 Abstract the scenarios into sequence diagrams

 Divide complex interactions

 Prepare a sequence diagram for each error condition

4 (a) Write short notes on:

i) Recurring downwards.

4. Recursing Downward
 To organize operations as layers.

 Operations in higher layers invoke operations in lower
layers.

 Design process generally works top down- you start with
the higher-level operations and proceed to define lower-
level operations.

 Two ways of downward recursion:

 By functionality

 By mechanism

 Any large system mixes functionality layers and
mechanism layers.

29

Functionality Layers
 Functionality recursion means that you take the

required high-level functionality and break it into
lesser operations.

 Make sure you combine similar operations and attach
the operations to classes.

 An operation should be coherent, meaningful, and not
an arbitrary portion of code.

 ATM eg., use case decomposed into responsibilities
(see sec 15.3). Resulting operations are assigned to
classes (see sec 15.4.4). If it is not satisfied rework
them

30

Mechanism Layers
 Mechanism recursion means that you build the system

out of layers of needed support mechanisms.

 In providing functionality, you need various
mechanisms to store information, sequence control,
coordinate objects, transmit information, perform
computations and other kinds computing infrastructure

 These mechanisms don’t show up explicitly in the high-
level responsibilities of a system, but they are needed to
make it all work.

 E.g. Computing architecture includes

 Data structures, algorithms, and control patterns.

32

ii) Two-way associations.

OBJECT ORIENTED MODELING AND DESIGN 10CS71 ISE VII / A & B

Two-way Association
 Many associations are traversed in both directions, not

usually with equal frequencies

 Three approaches for implementation

 Implement one-way

 Implement two-way

 Implement with an association object

employer

Person Company

Set

iii) Reverse engineering vs forward

engineering.

Forward Engineering Reverse Engineering

Given Requirements – develop an
application.

Given an application – deduce
tentative requirement.

More certain – developer develops
according to requirement.

Less certain – can yield different
requirements.

Prescriptive – developers are told how
to work

Adaptive – find out what the
developers actually did.

More mature – skilled staffs available. Less mature – skilled staff are not
present

Time consuming Less time consumption.

Model will fail if not developed
correctly

Salvaging partial information is still
useful.

iv) Wrapping.

5. Wrapping:

• Some applications – written long ago, missing documentation, lack guidance

and poorly understood.

•Changes can threaten their viability and risk introducing bugs. So

need to limit changes to these type of applications/system.

•Solution – Isolate the code and build a wrapper around it.

•Wrapping – a collection of interfaces that control access to the

system/application.

•It consists of a set of boundary classes that provide the interface and

it calls the existing system/application.

•Advantage – adding few functionality is easy.

5 (a) What do you mean by concurrency?

Explain Aggregation concurrency and the

different types of concurrency among objects.

Aggregation Concurrency
 A state diagram for an assembly is a collection of state

diagrams one for each part.

 The aggregate state corresponds to the combined
states of all the parts.

 The aggregate state is one state from the first diagram,
and a state from the second diagram, and a state from
each other diagram.

 Transition for one object can depend on another object
being in a given state.

The state of the car

includes one state from

each part.

OBJECT ORIENTED MODELING AND DESIGN 10CS71 ISE VII / A & B

Concurrency within an Object
 Some objects can be partitioned into subsets of

attributes or links.

 Each of the partitioned subset has its own subdiagram.

 The state of the object comprises one state from each
subdiagram.

 The subdiagrams need not be independent; the same
event can cause transitions in more than on
subdiagram.

Concurrency within an Object

 The play of a bridge rubber

6. List and explain the steps involved in design

of algorithms.

3.Designing Algorithms
 Formulate an algorithm for each operation

 The analysis specification tells what the operation does
for its clients

 The algorithm show how it is done

17

Designing Algorithms- steps
i. Choose algorithms that minimize the cost of

implementing operations.

ii. Select data structures appropriate to the algorithms

iii. Define new internal classes and operations as
necessary.

iv. Assign operations to appropriate classes.

18

i. Choosing algorithms
(Choose algorithms that minimize the cost of implementing operations)

 When efficiency is not an issue, you should use simple
algorithms.

 Typically, 20% of the operations consume 80% of
execution time.

19

ATM Example
 Interactions between the consortium computer and

bank computers could be complex.

 Considerations:
 Distributed computing

 The scale of consortium computer (scalability)

 The inevitable conversions and compromises in
coordinating the various data formats.

 All these issues make the choice of algorithms for
coordinating the consortium and the banks important

21

OBJECT ORIENTED MODELING AND DESIGN 10CS71 ISE VII / A & B

ii. Choosing Data Structures
(select data structures appropriate to the algorithm)

 Algorithms require data structures on which to work.

 They organize information in a form convenient for
algorithms.

 Many of these data structures are instances of
container classes.

 Such as arrays, lists, queues, stacks, set…etc.

23

iii. Defining New Internal Classes and Operations

 To invent new, low-level operations during the
decomposition of high-level operations.

 The expansion of algorithms may lead you to create
new classes of objects to hold intermediate results.

 ATM Example:

 Process transaction uses case involves a customer
receipt.

 A Receipt class is added.

24

iv. Assigning Operations to
Classes
(assign operations to appropriate classes)

 How do you decide what class owns an operation?

 Receiver of action

 To associate the operation with the target of operation, rather
than the initiator.

 Query vs. update

 The object that is changed is the target of the operation

 Focal class

 Class centrally located in a star is the operation’s target

 Analogy to real world

25

ATM Example
 Process transaction includes:

 Withdrawal includes responsibilities:
 Get amount from customer, verify that amount is covered by

the account balance, verify that amount is within the bank’s
policies, verify that ATM has sufficient cash, ….

 A database transaction ensures all-or-nothing behavior.

 Deposit

 Transfer

 Customer.getAccount(),
account.verifyAmount(amount),
bank.verifyAmount(amount),
ATM.verifyAmount(amount)

26

Process transaction

 (b) What are the inputs and outputs of

reverse engineering?

Inputs to reverse Engineering:

• Programming code – helps to understand the flow of control and the

data structure. Comments, variables and functions – deeper

understanding.

•Database Structure – Specifies the data structure and many

constraints.

•Data – discover much of the data structure.

•Documentation – user manuals, data dictionaries – entities and

definitions.

•Application understanding – for better understanding of interfaces.

•Test cases – normal flow of control and unusual situations.

Outputs from Reverse Engineering:

• Models – Provides a basis for understanding the original software and

building any successor software.

•Mappings – Bind programming code to state and interaction models.

•Logs – record their observations and pending questions.

OBJECT ORIENTED MODELING AND DESIGN 10CS71 ISE VII / A & B

7 (a) For an ATM example:

1. Analyze the different use cases by

designing a use case diagram.

2. Explain process transaction scenario.

Process transaction Scenario

ATM displays a menu of accounts and commands.

User selects an account withdrawal.

ATM asks for the amount of cash.

User enters 10000.

ATM verifies that the withdrawal satisfies its policy limits.

ATM contacts the consortium and bank and verifies that the account has

sufficient funds.

ATM dispenses the cash and asks the user to take it.

User takes the cash.

ATM displays a menu of accounts and commands.

3. Bring out initial and final events for

each of the use cases.

4. Find initial and final events

ATM example

 Initial session

– Initial event

The customer’s insertion of a cash card.

– final event

The system keeps the cash card, or

The system returns the cash card.

ATM example

 Query account

– Initial event

A customer’s request for account data.

– final event

The system’s delivery of account data to the customer.

4. Find initial and final events

ATM example

 Process transaction

– Initial event

The customer’s initiation of a transaction.

– final event

Committing or

Aborting the transaction

ATM example

 Transmit data

– Initial event

Triggered by a customer’s request for account data, or

Recovery from a network, power, or another kind of failure.

– final event

Successful transmission of data.

4. With the help of activity diagram, show

the possible responses for the

verification of card inserted by the user

at the ATM.

ATM Example

Activity diagram for card verification

8 (a) Explain the different tasks involved in

design optimization.

6. Design Optimization
 To design a system is to first get the logic correct and

then optimize it. (because it is difficult to optimize a
design at the same time as you create it)

 Often a small part of the code is responsible for most
of the time or space costs.

 It is better to focus optimization on the critical areas,
than to spread effort evenly.

37

OBJECT ORIENTED MODELING AND DESIGN 10CS71 ISE VII / A & B

Design Optimization
 Optimized system is more obscure and less likely

to be reusable.

 You must strike an appropriate balance between
efficiency and clarity.

 Tasks to optimization:

i. Provide efficient access paths.

ii. Rearrange the computation for greater efficiency.

iii. Save intermediate results to avoid recomputation.

38

i. Adding Redundant Associations for Efficient
Access
 Rearrange the associations to optimize critical aspects

of the system.

 Consider employee skills database

 Company.findSkill() returns a set of persons in the
company with a given skill.

 Suppose the company has 1000 employees, Each of
whom has 10 skills on average. A simple nested loop
would traverse Employs 1000 times and HasSkill 10,000
times

39

Adding Redundant Associations for Efficient
Access
 In case where the number of hits from a query is low

because few objects satisfy the test, an index can improve
access to frequently retrieved objects.

40

ii. Rearranging Execution order for Efficiency

-eliminate dead paths

iii. Saving Derived Values to Avoid Recomputation

You must update the cache if any of the objects on
which it depends are changed. There are three ways to
handle updates:

• Explicit update: the designer inserts code into the
update operation of source attributes to explicitly
update the derived attributes that depend on it.

• Periodic Recomputation

• Active values: An active value is a value that is
automatically kept consistent with its source values.

CH 15/CLASS DESIGN 06CS71/OOMD 15.42

