
Page 1 of 23

CMR

INSTITUTE OF

TECHNOLOGY

USN

Internal Assesment Test – II Solution

Sub: Embedded Computing Systems Code: 10CS72

Date: 07/11/2017 Duration: 90 mins Max Marks: 50 Sem: VII Branch: CSE

Answer Any FIVE FULL Questions

 Marks
OBE

CO RBT

1(a) Explain the four-cycle handshake protocol.

The basic building block of most bus protocols is the four-cycle

handshake, illustrated in the Figure. The handshake ensures that

when two devices want to communicate, one is ready to transmit

and the other is ready to receive. The handshake uses a pair of

wires dedicated to the handshake: enq (meaning enquiry) and ack

(meaning acknowledge). Extra wires are used for the data

transmitted during the handshake. The four cycles are described
below.

1. Device 1 raises its output to signal an enquiry, which tells device

2 that it should get ready to listen for data.

2. When device 2 is ready to receive, it raises its output to signal

an acknowledgment. At this point, devices 1 and 2 can transmit or

receive.

3. Once the data transfer is complete, device 2 lowers its output,

signaling that it has received the data.

4. After seeing that ack has been released, device 1 lowers its

output.

At the end of the handshake, both handshaking signals are low,

just as they were at the start of the handshake. The system has thus

returned to its original state in readiness for another handshake-

enabled data transfer.

[4] CO2 L2

(b) What is inter-process communication (IPC)? Explain the different IPC techniques.

Inter Process Communication (IPC) is the mechanism provided by the OS as
part of the process abstraction through which the processes/tasks communicate

with each other.

[6] CO2 L2

Page 2 of 23

Some of the important IPC mechanisms adopted by various kernels are

explained below:

1. Shared Memory

Processes share some area of the memory to communicate by the process is

written to the shared memory area. Other processes which require this

information can read the same from the shared memory area.

Some of the different mechanisms adopted by different kernels are as

below:

a. Pipes: Pipe is a section of the shared memory used by processes for

communicating. Pipes follow the client-server architecture. A process

which creates a pipe is known as a pipe server and a process which

connects to a pipe is known as pipe client. It can be unidirectional,

allowing information flow in one direction or it can be bidirectional,

allowing bi-directional information flow. Generally, there are two types

of pipes supported by the OS. They are:

Anonymous pipes: They are unnamed, unidirectional pipes used for data

transfer between two processes.

Names Pipes: They are named, unidirectional or bidirectional for data

exchange between two processes.

b. Memory Mapped Objects: This is a shared memory technique adopted

by some real-time OS for allocating shared block of memory which can

be accesses by multiple process simultaneously. In this approach, a

mapping object is created and physical storage for it is reserved and

committed. A process can map the entire committed physical area ir a

block of it to its virtual address space. All read-write operations to this

virtual address space by a process is directed to its committed physical

area. Any process which wants to share data with other processes can

map the physical memory area of the mapped object to its virtual

memory space and use it for sharing the data.

2. Message Passing

Message passing is an (a)synchronous information exchange mechanism

used for Inter Process/Thread communication. The major difference

between shared memory and message passing is that through shared

memory lots of data can be shared whereas only limited amount of data is

passed through message passing. Also, message passing is relatively fast

and free from synchronization overheads compared to shared memory.

Based on the message passing operation between the processes, message

passing is classified into:

a. Message Queue: Usually the process which wants to talk to another

process posts the message to a First-In-First-Out (FIFO) queue called

‘message queue’, which stores the message temporarily in a system

Page 3 of 23

defined memory object, to pass it to the desired process. Messages are

sent and received through send and receive methods. The messages are

exchanged through the message queue. It should be noted that the exact

implementation is OS dependent. The messaging mechanism is

classified into synchronous and asynchronous based on the behavior of

the message posting thread. In asynchronous messaging, the message

posting thread just posts the message to the queue and it will not wait for

an acceptance (return) from the thread to which the message is posted.

Whereas in synchronous messaging, the thread which the message is

posts the message enters waiting state and waits for the message result

from the thread to which the message is posted. The thread which

invoked the send message becomes blocked and the scheduler will not

pick it up for scheduling.

b. Mailbox: Mailbox is an alternative to ‘message queues’ used in certain

RTOS for IPC, usually used for one way messaging. The thread which

creates the mailbox is known as ‘mailbox server’ and the threads which

subscribe to the mailbox are known as ‘mailbox clients’. The mailbox

server posts messages to the mailbox and notifies it to the clients which

are subscribed to the mailbox. The clients read the message from the

mailbox on receiving the notification. The process of creation,

subscription, message reading and writing are achieved through OS

kernel provided API calls.

c. Signaling: Signaling is a primitive way of communication between

processes/threads. Signals are used for asynchronous notifications where

one process/trhead fires a signal, indicating the occurrence of a scenario

which the other process(es)/thread(s) is waiting. Signals are not queued

and they do not carry any data.

3. Remote Procedure calls and Sockets

Remote Procedure Call (RPC) is the IPC mechanism used by a process to

call a procedure of another process running on the same CPU or on a

different CPU which is interconnected in a network. In object oriented

language terminology RCP is also known as Remote Method Invocation

(RMI). RPC is mainly used for distributed applications like client-server

applications. The CPU/process containing the procedure which needs to be

invoked remotely is known as server. The CPU/process which initiates an

RPC request is known as client.

Sockets are used for RPC communication. Socket is a logical endpoint in a

two-way communication link between two applications running on a

network. Sockets are of different types, namely, Internet Sockets (INET),

Page 4 of 23

UNIX sockets, etc. The INET sockets works on internet communication

protocols, such as TCP/IP and UDP. They are classified into stream sockets

and datagram sockets.

Stream sockets are connection oriented, and they use TCP to establish a

reliable connection.

Datagram sockets rely on UDP for communication. The UDP connection is

unreliable when compared to TCP.

2(a) List the different program optimization techniques. Explain any one technique

with an example.

1. Expression simplification

2. Dead code elimination

3. Procedure inlining

4. Loop transformations

5. Register allocation

6. Scheduling

7. Instruction selection

Expression Simplification:

This is a useful area for machine-independent transformations. Laws of

algebra are used to simplify expressions. For example, distributive law is

applied to rewrite the following expression:

a*b+a*c;

Re-written as a*(b+c);

The new expression has only teo operations rather than three for the original

form. This is certainly cheaper because it is both faster and smaller.

[4] CO1 L1

Page 5 of 23

(b) Analyze the following ARM assembly code:
LDR r0,a

LDR r1,b

ADD r2,r0,r1

STR r2,w

LDR r0,c

LDR r1,d

ADD r2,r0,r1

STR r2,x

LDR r1,c

ADD r0,r1,r2

STR r0,u

LDR r0,a

LDR r1,b

SUB r2,r1,r0

STR r2,v

Answer the following:

i. Write the sample C code fragment for the above ARM assembly code.

ii. Draw register lifetime graph for the C code in (i).

iii. Modify the C code from (i) using operator scheduling for register allocation.

iv. Draw lifetime graph for the modified C code in (iii).

v. Generate ARM code for the modified C code in (iii).

vi. Draw DFG for (i) and (iii).

vii. Write the sample C code fragment for the above ARM assembly code
i. w=a+b;

ii. x=c+d;

iii. u=c+x;

iv. v=b-a;

viii.Draw a lifetime graph that shows uses of register in register allocation

from the above C statement.

ix.Modify the obtained C code statement using operator scheduling for

register allocation
i. w=a+b;

ii. v=b-a;

iii. x=c+d;

iv. u=c+x;

x. Draw a lifetime graph for the modified C code

[6] CO4 L4

a

b

c

d

w

x

u

v

1 2 3 4

Page 6 of 23

xi.Write a ARM assembly code for the modified C code using register

allocation.
LDR r0,a

LDR r1,b

ADD r2,r0,r1

STR r2,w

SUB r2,r1,r0

STR r2,v

LDR r0,c

LDR r1,d

ADD r2,r0,r1

STR r2,x

LDR r1,c

ADD r0,r1,r2

STR r0,u

xii. Draw DFG for (i) and (iii)

DFG for (i) and (iii) are the same, as shown below.

3(a) Explain the term Bus Master. Illustrate different components/signals on a bus.

Bus master It is a device that can initiate its own bus transfer is known as a bus

master. Devices that do not have the capability to be bus masters do not need to

connect to a bus request and bus grant.

The major components of a bus are as follows:

■ Clock provides synchronization to the bus components,

■ R/W is true when the bus is reading and false when the bus is writing,

■ Address is an a-bit bundle of signals that transmits the address for an access,

■ Data is an n-bit bundle of signals that can carry data to or from the CPU, and

■ Data ready signals when the values on the data bundle are valid.

[4] CO2 L2

a b c

+

w

d

+

x +

u

-

v

a

b

c

d

w

x

u

v

1 2 3 4

Page 7 of 23

(b) Three processes with ID’s P1, P2, P3 with estimated execution completion

time 5, 10, 7ms respectively enters the ready queue together in the order P1,

P2, P3. Process P4 with estimated execution completion time 2ms enters the

ready queue after 5 ms. Which of the following scheduling policies is best

for this scenario? Justify your choice.

i. FIFO

Process Waiting Time (WT) (ms) Turn Around Time (TAT) (ms)

P1 0 5

P2 5 15

P3 15 22

P4 22-5 = 17 24-5=19

Average 9.25 15.25

ii. preemptive SJF

Process Waiting Time (WT) (ms) Turn Around Time (TAT) (ms)

P1 0 5

P2 14 24

P3 7 14

P4 5-5=0 7-5=2

[6] CO3 L3

P1 P2 P3

0 5

P4

15 24 8 14 6 7

P1 P2 P3

0 5

P4

6 15 16 22 23-24

Page 8 of 23

Average 5.25 11.25

iii. RR (Time slice 2ms)

Process Waiting Time (WT) (ms) Turn Around Time (TAT) (ms)

P1 10 15

P2 14 24

P3 15 22

P4 6-5=1 8-5=3

Average 10.0 16.0

From the above three scheduling policies, we see that preemptive SJF yields the

least average waiting time (AWT) and Average Turn Around Time (ATAT).

Thus, preemptive SJF is the best scheduling policy for the given scenario.
4(a) Precisely differentiate the following:

i. Cooperating vs competing processes

ii. DFG vs CDFG programming models

iii. Deadlock vs livelock

iv. Anonymous pipes vs named pipes.

i. Cooperating vs Competing processes

Cooperating processes Competing processes

In this model, one process requires

the inputs from other processes to

complete its execution

In this model, the processes do not

share anything among themselves,

but they compete for the system

resources.

They can further be classified as

cooperation though sharing, and

cooperation though communication

Here the classification in based on

the type of resource being shared

like file, display device etc

E.g. Process B requiring data X from

Process A to execute.

E.g. Process A needs printer P to

print file f1, and Process B also

needs Printer P to print file f2.

[4] CO2 L2

P1

0 2

P2 P3 P4 P1 P2 P3 P1 P2 P3 P2 P3 P2

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Page 9 of 23

ii. DFG vs CDFG programming models

DFG CDFG

Data Flow Graph is a model of

program with no conditionals.

Control/Data Flow Graph model

uses DFG as an element, adding

constructs to describe control.

Precisely, only one entry point and

one exit point.

May have multiple exit points

depending on how a program is

written.

Constitutes one basic block consisting

of operators as nodes and variables as

edges.

Usually contains more than one

basic blocks. Constitutes two types

of nodes, viz., decision nodes and

data flow nodes.

For the given input data set, ALL

statements are executed.

Based on the input data set, only

selected paths may execute.

e.g. C fragment:

x=a+b;

y=a-c;

z=x+d;

e.g. C fragment:

i=0;

if (a<b)

 i+=10;

else

 i-=10;

iii. Deadlock vs Livelock

Deadlock Livelock

Condition in which a process is

waiting for resource held by another

process, which in turn is waiting for a

resource held by the first process.

Condition in which a process always

does something but is unable to

make any progress towards

execution completion.

Situation where none of the processes

are able to make any progress in their

execution due to the cyclic

dependency of resources. This ends

up in none of the resources being

utilized.

Situation where progress seem to

happen all the time but actually no

real execution. This is similar to the

situation ‘always busy, doing

nothing’.

e.g. Pa blocked by Pb for resource. Pb

blocked by Pa for resource.

e.g. Both Pa and Pb needs x and y

for completion.

step 1: Pa holds x, Pb holds y

step 2: Pa drops x, Pb drops y

Page 10 of 23

Repeat steps 1 and 2

iv. Anonymous pipes vs named pipes

Anonymous pipes named pipes

Does not hold an explicit name.

Identifiable only via handler.

Has an explicit name in addition to a

handler

The pipe ceases to exist once the

creator process is terminated

The pipe goes on to exist even after

creator process terminates

Usually unidirectional Bidirectional

(b) Explain the working of DMA with illustration.

Direct memory access (DMA) is a bus operation that allows reads and writes not

controlled by the CPU. A DMA transfer is controlled by a DMA controller,

which requests control of the bus from the CPU. After gaining control, the DMA

controller performs read and write operations directly between devices and

memory.

Figure below shows the configuration of a bus with a DMA
controller. The DMA requires the CPU to provide two additional
bus signals:
■ The bus request is an input to the CPU through which DMA
controllers ask
for ownership of the bus.
■ The bus grant signals that the bus has been granted to the DMA
controller.

A device that can initiate its own bus transfer is known as a bus

[6] CO2 L2

Page 11 of 23

master. Devices that do not have the capability to be bus masters
do not need to connect to a bus request and bus grant. The DMA
controller uses these two signals to gain control of the bus using a
classic four-cycle handshake. The bus request is asserted by the
DMA controller when it wants to control the bus, and the bus
grant is asserted by the CPU when the bus is ready.

The CPU will finish all pending bus transactions before granting
control of the bus to the DMA controller. When it does grant
control, it stops driving the other bus signals: R/W, address, and
so on. Upon becoming bus master, the DMA controller has control
of all bus signals (except, of course, for bus request and bus
grant).
Once the DMA controller is bus master, it can perform reads and
writes using the same bus protocol as with any CPU-driven bus
transaction. Memory and devices do not know whether a read or
write is performed by the CPU or by a DMA controller.

After the transaction is finished, the DMA controller returns the
bus to the CPU by deasserting the bus request, causing the CPU to
deassert the bus grant.

The CPU controls the DMA operation through registers in the
DMA controller.

A typical DMA controller includes the following three registers:
■ A starting address register specifies where the transfer is to
begin.
■ A length register specifies the number of words to be
transferred.
■ A status register allows the DMA controller to be operated by
the CPU.

The CPU initiates a DMA transfer by setting the starting address
and length registers appropriately and then writing the status
register to set its start transfer bit. After the DMA operation is
complete, the DMA controller interrupts the CPU to tell it that the
transfer is done.

What is the CPU doing during a DMA transfer? It cannot use the
bus. As illustrated in Figure 4.10, if the CPU has enough
instructions and data in the cache and registers, it may be able to

Page 12 of 23

continue doing useful work for quite some time and may not
notice the DMA transfer. But once the CPU needs the bus, it stalls
until the DMA controller returns bus mastership to the CPU.

To prevent the CPU from idling for too long, most DMA controllers
implement modes that occupy the bus for only a few cycles at a
time. For example, the transfer may be made 4, 8, or 16 words at a
time. As illustrated in Figure 4.11, after each block, the DMA
controller returns control of the bus to the CPU and goes to sleep
for a preset period, after which it requests the bus again for the
next block transfer.

5(a) What is RTOS? List the different services of RTOS, and explain any one in
detail.

RTOS stands for Real-Time Operating System, which is a type of operating
system that implements policies and rules concerning time-critical allocation

of system resources. RTOS decides which applications should run in which

order, and how much time needs to be allocated for each application. E.g.

Windows CE, QNX, VxWorks MicroC/OS-II.

Services of RTOS:

1. Real-time Kernel

a. Task/Process management

b. Task/Process scheduling

[4] CO1 L1

Page 13 of 23

c. Task/Process synchronization

d. Error/Exception handling

e. Primary and Secondary Memory Management

f. File System Management

g. I/O system/ Device Management

h. Interrupt Handling

i. Time Management

j. Protection systems

2. Hard Real-Time

3. Soft-Real-Time

Hard/Soft -Real time:

RTOS must adhere to the timing constraints of the processes/ applications.
Based on the type of deadline, RTOS can be classified as either hard real

time or soft real time system.

RTOS that strictly adhere to the deadline associated to tasks without any
slippage are referred to as hard real-time systems. Missing any deadline may

produce catastrophic results, including permanent data loss, irrecoverable

damages and/or safety concerns. Here, the principle is ‘A late answer is

wrong answer’. E.g. Anti-lock Braking System (ABS), Airbag control in

vehicles.

RTOS that does not strictly guarantee meeting deadlines, but offers best
effort to meet the deadline are referred to as soft real-time systems. Missing

deadlines for tasks are acceptable if the frequency of missing deadline is

within the compliance limit of the Quality of Service (QoS). E.g. Automatic

Teller Machine (ATM), Audio-Video playback systems.

(b) Analyze the following C fragment:

 if (a < b) {

 if (c < d)

 x = 1;

 else

 x = 2;

 }

 else{

 if (e < f)

 x = 3;

 else

 x = 4;

 }

i. Generate ARM assembly code.

ii. Draw the CDFG.

iii. Find the cyclomatic complexity of the CDFGs.

iv. Generate ARM assembly code.

ADR R0, a ;

LDR R1, [R0]; R1 <- a

ADR R0, b

[6] CO4 L4

Page 14 of 23

LDR R2, [R0]; R2 <- b

ADR R0, c ;

LDR R3, [R0]; R3 <- c

ADR R0, d

LDR R4, [R0]; R4 <- d

CMP R1, R2

BGE outer_else

CMP R3, R4

BGE inner_else1

MOV R5, #1

JUMP after

inner_else1:MOV R5, #2

JUMP after

outer_else: ADR R0, e

LDR R3, [R0] ; R3 <- e

ADR R0, f

LDR R4, [R0] ; R4 <- f

CMP R3, R4

BGE inner_else2

MOV R5, #3

JUMP after

inner_else2: MOV R5, #4

after: ADR R0, x

STR R5, [R0] ; R5 -> x

v. Draw the CDFG.

vi. Find the cyclomatic complexity of the CDFGs.

Cyclomatic Complexity M = e – n + 2p

From the above CDFG,

Number of edges, e = 10

Number of nodes, n= 8

Number of exit points, p = 1

Therefore, Cyclomatic Complexity M = 10-8+2=4

a<b

c<d

x=1 x=2

e<f

x=3 x=4

F

T

F F

T T

Page 15 of 23

6(a) For the following basic block given below, rewrite it in single-assignment form,

and then generate the DFG.

 r=a+b-c;

 s=2*r;

 t=b-d;

 r=d+e;

Single-Assignment Form:

r1=a+b-c;

 s=2*r1;

 t=b-d;

 r2=d+e;

[4] CO3 L3

(b) Explain how bridge can be used to connect different speed systems.

A microprocessor system often has more than one bus. As shown in

the Figure, the high-speed devices may be connected to a high-

performance bus, while lower-speed devices are connected to a

different bus. A small block of logic known as a bridge allows the

buses to connect to each other. There are several good reasons to use

[6] CO2 L2

r1

b a c d

+

-

-

t

*

2

s

e

+

r2

Page 16 of 23

multiple buses and bridges:

■ Higher-speed buses may provide wider data connections.

■ A high-speed bus usually requires more expensive circuits and

connectors.

The cost of low-speed devices can be held down by using a lower-

speed, lower-cost bus. The bridge may allow the buses to operate

independently, thereby providing some parallelism in I/O operations.

Consider the operation of a bus bridge between a fast bus and a slow

bus as illustrated in the Figure. The bridge is a slave on the fast bus

and the master of the slow bus. The bridge takes commands from the

fast bus on which it is a slave and issues those commands on the slow

bus. It also returns the results from the slow bus to the fast bus—for

example; it returns the results of a read on the slow bus to the fast bus.

The upper sequence of states handles a write from the fast bus to the

slow bus. These states must read the data from the fast bus and set up

the handshake for the slow bus. Operations on the fast and slow sides
of the bus bridge should be overlapped as much as possible to reduce

the latency of bus-to-bus transfers.

Similarly, the bottom sequence of states reads from the slow bus and

writes the data to the fast bus. The bridge serves as a protocol

translator between the two bridges as well. If the bridges are very

close in protocol operation and speed, a simple state machine may be

enough. If there are larger differences in the protocol and timing

between the two buses, the bridge may need to use registers to hold

some data values temporarily.

7(a) 2. Consider the following loop.

 int N=8, M=4;

 for (i = 0; i < N*M; i++)

 x[i] = a[i] * c[i];

i. Optimize the code applying code motion technique.

ii. Optimize the code applying loop unrolling 2 times.

iii. Optimize the code applying code motion technique.

int N=8, M=4;

temp = N*M;

 for (i = 0; i < temp; i++)

 x[i] = a[i] * c[i];

iv. Optimize the code applying loop unrolling 2 times.

int N=8, M=4;

temp = N*M;

 for (i = 0; i < temp; i+=2)

 x[i] = a[i] * c[i]

[4] CO3 L3

Page 17 of 23

 x[i+1] = a[i+1] * c[i+1]

(b) What is task synchronization? Explain the different task synchronization

techniques.

The act of making processes aware of the access of shared resources by each
process to avoid conflicts is known as Task synchronization. Task

synchronization is essential for 1. Avoiding conflicts in resource access (racing,

deadlock, livelock, starvation) in a multitasking environment, and 2. Ensuring

proper sequence of operation across processes. E.g. producer-consumer

problem.

Different task synchronization techniques to address them are as follows:

1. Mutual Exclusion through busy waiting/spin lock:

Busy waiting is the simplest method for enforcing mutual exclusion. The

busy waiting technique uses a lock variable for implementing mutual

exclusion. Each process/thread checks this lock variable before entering the

critical section. The lock is set to ‘1’ by a process/thread if the

process/thread is already in its critical section; otherwise the lock is set to

‘0’. The major challenge in implementing the lock variable based

synchronization is the non-availability of a single atomic instruction which

combines the reading, comparing and setting of the lock variable. To

address this issue is tackled by combining the actions of reading the lock

variable, testing its state and setting the lock into a single step, with a

combined hardware and software support. Most processors support a single

instruction ‘Test and Set Lock’ (TSL) for testing and software support. This

instruction call copies the value of the lock variable and sets it to a nonzero

value.

The lock based mutual exclusion implementation always checks the state of

a lock and waits till the lock is available. This keeps the processes/threads

always busy and forces the processes/threads to wait or spin in one state till

the availability of the lock for proceeding further. Hence, this

synchronization is got the name ‘Busy Waiting’ or ‘Spin Lock’. For the

same reason, this mechanism leads to underutilization, wastage of processor

time and power consumption.

2. Mutual Exclusion through Sleep and Wake up:

An alternative to ‘busy waiting’ is the ‘Sleep & Wakeup’ mechanism. When

a process is not allowed to access the critical section that has been locked by

another process, the process undergoes ‘Sleep’ and enters ‘Blocked’ state.

The process which is blocked on waiting for access to the critical section is

awakened by the process which currently owns the critical section. Sleep &

Wake can be implemented in different ways. Few of them are listed below.

[6] CO2 L2

Page 18 of 23

Semaphores: It is a sleep and wake up based mutual exclusion for shared

memory access, which limits the access of resources by a fixed number of

processes/threads. This is further classified into two: Binary semaphore and

Counting Semaphore. The binary semaphore, also called mutex, provides

exclusive access to shared resource by allocating the resource to a single

process at a time, and not allowing other process to access it when it is

being owned by a process. Counting Semaphore, on the other hand,

maintains a count between zero and a value. It limits the usage of a resource

to the maximum value of the count supported by it.

Critical Section Objects: In Windows CE, the critical section object is same

as the mutex object, except that Critical section object can only be used by

the threads of a single process (Intra process). The piece of code which

needs to be made critical section is places in the ‘critical section’ area by the

process. The memory area which is to be used as the ‘critical section’ is

allocated by the process. Once the critical section is initialized, all threads in

the process can use it using an API call for getting exclusive ownership of

the critical section.

Events: Event object is a synchronization technique which uses the

notification mechanism for synchronization. In the concurrent execution we

may come across situations which demand processes to wait for a particular

sequence for its operations. For example, in producer-consumer threads, the

consumer should wait to consume the data for producer to produce the data,

and likewise, producer should wait for consumer to consume data. Event

objects are helpful to implement notification mechanisms in such scenarios.

A thread/process can wait for an event and another thread/process can set

this event for processing by the waiting thread/process.

8(a) Precisely differentiate the following:

i. PC vs PLC

ii. Counting semaphore vs mutex

iii. Non-preemptive scheduling vs preemptive scheduling

iv. Asynchronous vs Synchronous message passing

i. PC vs PLC

PC PLC

Program counter: Points to the next

instruction to be executed

Program Location Counter: Points to

the next instruction to be parsed to

generate addresses to each

instruction.

[4] CO2 L2

Page 19 of 23

Branches to the location where the

branch target address points to

No effect of branch instruction, as it

only keeps track of instruction

address (no actual execution)

May pass over the same instruction

more than once

Exactly passes each instruction once

ii. Counting semaphore vs Binary semaphore

Counting semaphore Binary semaphore

It is a sleep and wake up based

mutual exclusion for shared memory

access, which limits the access of

resources by a fixed number of

processes/threads.

Aka Mutex is also a counting

semaphore, but restricting the access

to only one process/thread at any

given time.

Maintains count between 0 and N,

where N is the number of

processes/threads that can access

resource at a given time.

Uses 1-bit value tracking. That is

counts 0 to 1.

e.g Network card supporting N ports

for N parallel communication.

e.g. Printer uses a 1-bit lock stating

whether it is in use or not. A process

can use a printer only if it is not

locked.

iii. Non-preemptive scheduling vs Preemptive Scheduling

Non-preemptive scheduling Preemptive Scheduling

In a multitasking model, this allows

the currently executing task/process

to run until it terminates or enters

wait state, waiting for an IO or

system resource.

In this multitasking model, every

task in the Ready queue gets a

chance to execute by evicting the

currently running process. Here the

scheduler temporarily pre-empts

(stops) the currently running process.

E.g First Come First Served (FCFS),

Last Come First served (LCFS),

Shortest Job First (SJF), Priority

based scheduling.

E.g. Preemptive SJF, Round Robin

(RR).

iv. Non-blocking vs Blocking communication

Non-blocking Blocking communication

Allows the process to continue

execution after sending the

After sending communication, the

process goes to waiting state until it

Page 20 of 23

communication. receives a response.

e.g. Synchronous RPC waiting for

acknowledgement for every message

sent.

e.g. Asynchronous RPC, where the

calling process continues its

execution while remote process

executes the procedure.

(b) Explain the role of assemblers and linkers in the compilation process with a neat

diagram.

Assemblers
When translating assembly code into object code, the assembler must translate

opcodes and format the bits in each instruction, and translate labels into

addresses. In this section, we review the translation of assembly language into

binary.

Labels make the assembly process more complex, but they are the most important

abstraction provided by the assembler. Labels let the programmer (a human

programmer or a compiler generating assembly code) avoid worrying about the

locations of instructions and data. Label processing requires making two passes

through the assembly source code as follows:

1. The first pass scans the code to determine the address of each label.
2. The second pass assembles the instructions using the label values computed in

the first pass.

As shown in Figure, the name of each symbol and its address is stored in a

symbol table that is built during the first pass. The symbol table is built by

scanning from the first instruction to the last. (For the moment, we assume that

we know the address of the first instruction in the program). During scanning, the

current location in memory is kept in a program location counter (PLC). Despite

the similarity in name to a program counter, the PLC is not used to execute the

program, only to assign memory locations to labels. For example, the PLC always
makes exactly one pass through the program, whereas the program counter makes

many passes over code in a loop.

At the start of the first pass, the PLC is set to the program’s starting address and

the assembler looks at the first line. After examining the line, the assembler

updates the PLC to the next location (since ARM instructions are four bytes long,

[6] CO2 L2

Page 21 of 23

the PLC would be incremented by four) and looks at the next instruction. If the

instruction begins with a label, a new entry is made in the symbol table, which

includes the label name and its value. The value of the label is equal to the current

value of the PLC.

At the end of the first pass, the assembler rewinds to the beginning of the

assembly language file to make the second pass. During the second pass, when a

label name is found, the label is looked up in the symbol table and its value

substituted into the appropriate place in the instruction.

To know the starting value of the PLC, we assume the simplest case of absolute

addressing. In this case, one of the first statements in the assembly language

program is a pseudo-op that specifies the origin of the program, that is, the

location of the first address in the program. A common name for this pseudo-op

(e.g., the one used for the ARM) is the ORG statement

ORG 2000

which puts the start of the program at location 2000. This pseudo-op

accomplishes this by setting the PLC’s value to its argument’s value, 2000 in this

case. Assemblers generally allow a program to have many ORG statements in

case instructions or data must be spread around various spots in memory.

Assemblers allow labels to be added to the symbol table without occupying space

in the program memory. A typical name of this pseudo-op is EQU for equate. For

example, in the code
ADD r0,r1,r2

FOO EQU 5

BAZ SUB r3, r4,#FOO

the EQU pseudo-op adds a label named FOO with the value 5 to the symbol table.

The value of the BAZ label is the same as if the EQU pseudo-op were not

present, since EQU does not advance the PLC. The new label is used in the

subsequent SUB instruction as the name for a constant. EQUs can be used to

define symbolic values to help make the assembly code more structured.

The ARM assembler supports one pseudo-op that is particular to the ARM

instruction set. In other architectures, an address would be loaded into a register
(e.g., for an indirect access) by reading it from a memory location. ARM does not

have an instruction that can load an effective address, so the assembler supplies

the ADR pseudo-op to create the address in the register. It does so by using ADD

or SUB instructions to generate the address. The address to be loaded can be

register relative, program relative, or numeric, but it must assemble to a single

instruction. More complicated address calculations must be explicitly

programmed.

The assembler produces an object file that describes the instructions and data in

binary format. A commonly used object file format, originally developed for
Unix but now used in other environments as well, is known as COFF (common

Page 22 of 23

object file format).The object file must describe the instructions, data, and any

addressing information and also usually carries along the symbol table for later

use in debugging.

Generating relative code rather than absolute code introduces some new

challenges to the assembly language process. Rather than using an ORG

statement to provide the starting address, the assembly code uses a pseudo-op to

indicate that the code is in fact relocatable. (Relative code is the default for the

ARM assembler.)

Similarly, we must mark the output object file as being relative code. We can

initialize the PLC to 0 to denote that addresses are relative to the start of the file.
However, when we generate code that makes use of those labels, we must be

careful, since we do not yet know the actual value that must be put into the bits.

We must instead generate relocatable code. We use extra bits in the object file

format to mark the relevant fields as relocatable and then insert the label’s

relative value into the field. The linker must therefore modify the generated

code—when it finds a field marked as relative, it uses the addresses that it has

generated to replace the relative value with a correct, value for the address.

Linking

Many assembly language programs are written as several smaller pieces rather

than as a single large file. Breaking a large program into smaller files helps
delineate program modularity. If the program uses library routines, those will

already be preassembled, and assembly language source code for the libraries

may not be available for purchase. A linker allows a program to be stitched

together out of several smaller pieces. The linker operates on the object files

created by the assembler and modifies the assembled code to make the necessary

links between files.

Some labels will be both defined and used in the same file. Other labels will be

defined in a single file but used elsewhere as illustrated in Figure. The place in

the file where a label is defined is known as an entry point. The place in the file
where the label is used is called an external reference. The main job of the loader

is to resolve external references based on available entry points. As a result of the

need to know how definitions and references connect, the assembler passes to the

linker not only the object file but also the symbol table. Even if the entire symbol

table is not kept for later debugging purposes, it must at least pass the entry

points. External references are identified in the object code by their relative

symbol identifiers.

The linker proceeds in two phases. First, it determines the address of the start of

each object file. The order in which object files are to be loaded is given by the

user, either by specifying parameters when the loader is run or by creating a load

map file that gives the order in which files are to be placed in memory.

Given the order in which files are to be placed in memory and the length of each

object file, it is easy to compute the starting address of each file. At the start of

the second phase, the loader merges all symbol tables from the object files into a

single, large table. It then edits the object files to change relative addresses into

addresses.

This is typically performed by having the assembler write extra bits into the

Page 23 of 23

object file to identify the instructions and fields that refer to labels. If a label

cannot be found in the merged symbol table, it is undefined and an error message

is sent to the user.

Controlling where code modules are loaded into memory is important in

embedded systems. Some data structures and instructions, such as those used to

manage interrupts, must be put at precise memory locations for them to work. In

other cases, different types of memory may be installed at different address

ranges. For example, if we have EPROM in some locations and DRAM in others,

we want to make sure that locations to be written are put in the DRAM locations.

Workstations and PCs provide dynamically linked libraries, and some embedded

computing environments may provide them as well. Rather than link a separate

copy of commonly used routines such as I/O to every executable program on the

system, dynamically linked libraries allow them to be linked in at the start of

program execution. A brief linking process is run just before execution of the

program begins; the dynamic linker uses code libraries to link in the required

routines. This not only saves storage space but also allows programs that use

those libraries to be easily updated. However, it does introduce a delay before the

program starts executing.

GOOD LUCK!

