

USN

Internal Assessment Test II – Sept. 2017

Sub: Advanced Computer Architecture(ACA) Sub Code: 10CS74 Branch: CSE

Date: 8/11/2017 Duration: 90 min’s Max Marks: 50 Sem / Sec: VII/A,B,C OBE

Answer any FIVE FULL Questions

MARKS

CO RBT

1 With a neat diagram describe the structure of Tomasulo based MIPS FP unit and explain the fields of

reservation station.

[10] CO3 L2

2 (a) What is the drawback of 1-bit dynamic branch prediction method? Clearly state, how to overcome in

2-bit prediction. Give the state transition diagram of 2-bit predictor.

[08] CO3 L1

 (b) To achieve a speedup of 80 with 100 processors what fraction of original computation can be

sequential?

[02] CO3 L3

3 Explain the principles of loop unrolling. Demonstrate the normal loop execution and loop unrolling

concept for the following C-code segment by translating the given code segment to MIPS assembly

language code.

C-code: for (i=1000; i>0; i--) X[i] = X[i] +s where s=scalar value

a) Calculate the number of clock cycles required per element for both unscheduled and scheduled

loops in normal case considering stalls/idle clock cycles.

b) Repeat the above step for loop unrolled execution with and without scheduling.

c) Calculate the average value of clock cycle per element for (a) and (b).

[10] CO3.

CO6

L3

 USN

Internal Assessment Test II – Sept. 2017

Sub: Advanced Computer Architecture(ACA) Sub Code: 10CS74 Branch: CSE

Date: 8/11/2017 Duration: 90 min’s Max Marks: 50 Sem / Sec: VII/A,B,C OBE

Answer any FIVE FULL Questions

MARKS

CO RBT

1 With a neat diagram describe the structure of Tomasulo based MIPS FP unit and explain the fields of

reservation station.

[10] CO3 L2

2 (a) What is the drawback of 1-bit dynamic branch prediction method? Clearly state, how to overcome in

2-bit prediction. Give the state transition diagram of 2-bit predictor.

[08] CO3 L1

 (b) To achieve a speedup of 80 with 100 processors what fraction of original computation can be

sequential?

[02] CO3 L3

3 Explain the principles of loop unrolling. Demonstrate the normal loop execution and loop unrolling

concept for the following C-code segment by translating the given code segment to MIPS assembly

language code.

C-code: for (i=1000; i>0; i--) X[i] = X[i] +s where s=scalar value

a) Calculate the number of clock cycles required per element for both unscheduled and scheduled

loops in normal case considering stalls/idle clock cycles.

b) Repeat the above step for loop unrolled execution with and without scheduling.

c) Calculate the average value of clock cycle per element for (a) and (b).

[10] CO3.

CO6

L3

4 Define Instruction level Parallelism. Explain data dependence and name dependence. Also

explain three types of data Hazard with example.

[10] CO3 L1

5 (a) Describe snooping with respect to cache-coherence protocol.

[06] CO4 L2

 (b) Assume we have a computer where the clock per instruction (CPI) is 1.0 when all memory

accesses hit in the cache. The only data accesses are loads and stores, and these total 50% of

the instructions. If the miss penalty is 25 clock cycles and the miss rate is 2%, how much faster

would the computer be if all instructions were cache hits?

[04] CO1,

CO3

L3

6 Explain directory based cache coherence for a distributed memory multiprocessor system along

with the state transition diagram.

[10] CO4 L2

7 Explain any three basic cache optimization techniques.

[10] CO5 L2

8 What are the four common questions for the first level of memory hierarchy?

[10] CO4,

CO5

L1

4 Define Instruction level Parallelism. Explain data dependence and name dependence. Also

explain three types of data Hazard with example.

[10] CO3 L1

5 (a) Explain snooping with respect to cache-coherence protocol.

[06] CO4 L2

 (b) Assume we have a computer where the clock per instruction (CPI) is 1.0 when all memory

accesses hit in the cache. The only data accesses are loads and stores, and these total 50% of

the instructions. If the miss penalty is 25 clock cycles and the miss rate is 2%, how much faster

would the computer be if all instructions were cache hits?

[04] CO1,

CO3

L3

6 Explain directory based cache coherence for a distributed memory multiprocessor system along

with the state transition diagram.

[10] CO4 L2

7 Explain any three basic cache optimization techniques.

[10] CO5 L2

8 What are the four common questions for the first level of memory hierarchy?

[10] CO4,

CO5

L1

Solution

1. The basic structure of Tomasulo based Floating point unit is shown below in diagram.

 Instructions are sent from the instruction unit into the instruction queue from which they

are issued in FIFO order.

 Each reservation station holds an instruction that has been issued and is awaiting

execution at a functional unit. The reservation station hold the operand values if they are

Scheme and Solution : Internal Assessment Test II – Nov. 2017

Sub: Advanced Computer Architecture(ACA) Sub Code: 10CS74 Branch: CSE

Date: 8/11/2017 Duration: 90 min’s Max Marks: 50 Sem / Sec: VII/A,B,C

already computed else it contains the names of the reservation stations that will provide

the operand values.

 Load buffers have three functions: hold the components of the effective address until it is

computed, track outstanding loads that are waiting on the memory, and hold the results of

completed loads that are waiting for the CDB.

 Similarly, store buffers have three functions: hold the components of the effective

address until it is computed, hold the destination memory addresses of outstanding stores

that are waiting for the data value to store, and hold the address and value to store until

the memory unit is available.

 All results from either the FP units or the load unit are put on the CDB, which goes to the

FP register file as well as to the reservation stations and store buffers.

 The FP adders implement addition and subtraction, and the FP multipliers do

multiplication and division.

Seven fields of reservation station are as follows

 Op: The operation to perform on source operands S1 and S2.

 Qj, Qk—It is set when operand values are unavailable. It contains the reservation stations

that will produce the corresponding source operand; a value of zero indicates that the

source operand is already available in Vj or Vk, or is unnecessary.

 Vj, Vk— It is set when operand values are available. It contains the value of source

operands. For loads, the Vk field is used to hold the offset field.

 A—Used to hold information for the memory address calculation for a load or store.

Initially, the immediate field of the instruction is stored here; after the address

calculation, the effective address is stored here.

 Busy—indicates that this reservation station and its accompanying functional unit are

occupied.

2. A) Dynamic Branch Prediction

 The simplest dynamic branch-prediction scheme is a branch-prediction buffer or branch

history table.

 A branch-prediction buffer is a small memory indexed by the lower portion of the address

of the branch instruction. The memory contains a bit that says whether the branch was

recently taken or not.

 The prediction is a hint that is assumed to be correct, and fetching begins in the predicted

direction. If the hint turns out to be wrong, the prediction bit is inverted and stored back.

 This simple 1-bit prediction scheme has a performance shortcoming: Even if a branch is

almost always taken, we will likely predict incorrectly twice, rather than once, when it is

not taken, since the misprediction causes the prediction bit to be flipped.

 To remedy this weakness, 2-bit prediction schemes are often used. In a 2-bit scheme, a

prediction must miss twice before it is changed.

2. B Problem

Thus, to achieve a speedup of 80 with 100 processors, only 0.25% of original computation can

be sequential.

3. A Principles of loop unrolling

• Loop unrolling is very useful when loop iterations are independent.

• Also load and store of different iterations can be easily interchanged if loop iterations are

independent.

• But in loop unrolling if same set of registers are used it complicates the scheduling

process. Hence different set of registers are used for each iteration.

• Consider the for loop

for (i=1000; i > 0; i--)

x[i] = x[i] + s;

 The MIPS code for the above loop is as follows

L.D F0, 0(R1); F0=array element

ADD.D F4, F0, F2; add scalar in F2

S.D F4, 0(R1); store result

DADDUI R1, R1, #-8; decrements pointer by 8 bytes

BNE R1, R2, Loop; branch R1! = R2

 In case of Pipeline Scheduling the dependent instruction is separated from the

source instruction by some distance equal to pipeline latency of source instruction.

 Without Pipeline Scheduling the loop will execute as follows. Branches have a delay or

latency of 1 clock cycle and integer operations have zero latency. Total clock cycles per

iteration = 9. Hence average number of clock cycles=9 per iteration.

 With Scheduling the loop will execute as follows taking only 7 clock cycles. Hence

average number of clock cycles=7 per iteration.

 Increases the amount of ILP and improves the scheduling.

 In case of loop unrolling the loop body is replicated multiple times and loop termination code

is adjusted at the end.

 If loop is unrolled for 4 iterations, then the unrolled loop would contain the loop body of 4

iterations and loop termination code at the end.

loop body(1
st
 iteration)

loop body(2
nd

 iteration)

loop body(3
rd

 iteration)

loop body(4
th

 iteration)

loop termination code.

 With Loop Unrolling : Hence when the loop is unrolled for four iterations there are

four copies of loop body and loop termination code is adjusted at the end as shown

below.

 Each loop body requires 6 clock cycles and loop termination code requires 3 clock cycles.

Total clock cycles for four iterations= (6*4) + 3 = 27

Hence average number of clock cycles per iteration= 27/4 = 6.8 clock cycles.

 Scheduling the unrolled loop: scheduling unrolled loop significantly reduces the number of

clock cycles and increases ILP.

Thus the total number of clock cycles required for four iterations are 14. Hence average

number of clock cycles per iteration= 14/4 = 3.5 clock cycles.

3. B Define Instruction level Parallelism. Explain data dependence and name dependence.

Also explain three types of data Hazard with example.

Instruction level Parallelism: The potential overlap among instructions inside pipeline is called

instruction-level parallelism (ILP), since the instructions can be evaluated in parallel.

Data Dependence: If two instructions are parallel, they can execute simultaneously in a pipeline

without causing any stalls. If two instructions are dependent they are not parallel and must be

executed in order. There are three different types of dependences: data dependences (also called

true data dependences), name dependences, and control dependences.

Data Dependences: An instruction j is data dependent on instruction i if either of the following

holds: • Instruction i produces a result that may be used by instruction j, or • Instruction j is data

dependent on instruction k, and instruction k is data dependent on instruction i. The second

condition simply states that one instruction is dependent on another if there exists a chain of

dependences of the first type between the two instructions. This dependence chain can be as long

as the entire program.

Name Dependence: Name dependence occurs when two instructions use the same register or

memory location, called a name, but there is no flow of data between the instructions associated

with that name. There are two types of name dependences between an instruction i that precede

instruction j in program order.

 An antidependence between instruction i and instruction j occurs when instruction j writes a

register or memory location that instruction i reads. The original ordering must be preserved

to ensure that i read the correct value.

 An output dependence occurs when instruction i and instruction j write the same register or

memory location. The ordering between the instructions must be preserved to ensure that the

value finally written corresponds to instruction j.

Data Hazard and various hazards in ILP.

a) Data Hazards: A hazard is created whenever there is dependence between instructions,

and they are close enough that the overlap caused by pipelining, or other reordering of

instructions, would change the order of access to the operand involved in the dependence.

b) Data hazards may be classified as one of three types, depending on the order of read and

write accesses in the instructions. Consider two instructions i and j, with i occurring

before j in program order.

RAW (read after write) — j tries to read a source before i writes it, so j incorrectly gets

the old value. This hazard is the most common type and corresponds to a true data

dependence. Program order must be preserved to ensure that j receives the value from i.

In the simple common five-stage static pipeline a load instruction followed by an integer

ALU instruction that directly uses the load result will lead to a RAW hazard.

Example

InstrJ tries to read operand before InstrI writes it

WAW (write after write) — j tries to write an operand before it is written by i. The writes

end up being performed in the wrong order, leaving the value written by i rather than the

value written by j in the destination. This hazard corresponds to output dependence.

Example

InstrJ tries to write operand before InstrI writes it

WAR (write after read) — j tries to write a destination before it is read by i, so i

incorrectly gets the new value. This hazard arises from antidependence. WAR hazards

cannot occur in most static issue pipelines even deeper pipelines or floating point

pipelines because all reads are early (in ID) and all writes are late (in WB). A WAR

hazard occurs either when there are some instructions that write results early in the

instruction pipeline, and other instructions that read a source late in the pipeline or when

instructions are reordered.

Example

InstrJ tries to write operand before InstrI reads i

– Gets wrong operand

– Called as “anti-dependence”

5. A Explain snooping with respect to cache coherence protocol.

 One method is to ensure that a processor has exclusive access to data item before it writes

that item. This style of protocol is called a write invalidate protocol because it invalidates

other copies on a write. It is by far the most common protocol, both for snooping and for

directory schemes. Exclusive access ensures that no other readable or writable copies of

an item exist when the write occurs: All other cached copies of the item are invalidated.

 Figure shows an example of an invalidation protocol for a snooping bus with write-back

caches in action. To see how this protocol ensures coherence, consider a write followed

by a read by another processor: Since the write requires exclusive access, any copy held

by the reading processor must be invalidated (hence the protocol name). Thus, when the

read occurs, it misses in the cache and is forced to fetch a new copy of the data.

 The alternative to an invalidate protocol is to update all the cached copies of a data item

when that item is written. This type of protocol is called as write update or writes

broadcast protocol. Because a write update protocol must broadcast all writes to shared

cache lines, it consumes considerably more bandwidth.

 To perform an invalidate, the processor simply acquires bus access and broadcasts the

address to be invalidated on the bus. All processors continuously snoop on the bus,

watching the addresses. The processors check whether the address on the bus is in their

cache. If so, the corresponding data in the cache are invalidated.

 The first processor to obtain bus access will cause any other copies of the block it is

writing to be invalidated. If the processors were attempting to write the same block, the

serialization enforced by the bus also serializes their writes.

5. B Assume we have a computer where the clock per instruction (CPI) is 1.0 when all

memory accesses hit in the cache. The only data accesses are loads and stores, and these

total 50% of the instructions. If the miss penalty is 25 clock cycles and the miss rate is 2%,

how much faster would the computer be if all instructions were cache hits?

6. Explain directory based cache coherence for a distributed memory multiprocessor

system along with the state transition diagram.

In a simple protocol, the states could be the following:

Shared—One or more processors have the block cached, and the value in memory is up to date

(as well as in all the caches).

Un-cached—No processor has a copy of the cache block.

Modified—Exactly one processor has a copy of the cache block, and it has written the block, so

the memory copy is out of date. The processor is called the owner of the block.

A directory is added to each node to implement cache coherence in a distributed-memory

multiprocessor. Each directory is responsible for tracking thecaches that share the memory

addresses of the portion of memory in the node. Thedirectory may communicate with the

processor and memory over a common bus, asshown, or it may have a separate port to memory,

or it may be part of a central nodecontroller through which all intra-node and inter-node

communications pass.

Before we see the protocol state diagrams, it is useful to examine a catalog of the message types

that may be sent between the processors and the directories for the purpose of handling misses

and maintaining coherence

The local node is the node where a request originates. The home node is the node where the

memory location and the directory entry of an address reside. The local node may also be the

home node. The directory must be accessed when the home node is the local node, since copies

may exist in yet a third node, called a remote node.A remote node is the node that has a copy of a

cache block, whether exclusive (in which case it is the only copy) or shared. A remote node may

be the same as either the local node or the home node. In such cases, the basic protocol does not

change, but inter-processor messages may be replaced with intra-processor messages.

When a block is in the un-cached state, the copy in memory is the current value, so the only

possible requests for that block are

 Read miss—The requesting processor is sent the requested data from memory, and the

requestor is made the only sharing node. The state of the block is made shared.

 Write miss—The requesting processor is sent the value and becomes the sharing node.

The block is made exclusive to indicate that the only valid copy is cached. Sharers

indicates the identity of the owner.

When the block is in the shared state, the memory value is up to date, so the sametwo requests

can occur:

 Read miss—The requesting processor is sent the requested data from memory,and the

requesting processor is added to the sharing set.

 Write miss—The requesting processor is sent the value. All processors in theset Sharers

are sent invalidate messages, and the Sharers set is to contain theidentity of the requesting

processor. The state of the block is made exclusive.

When the block is in the exclusive state, the current value of the block is held in the cache of the

processor identified by the set Sharers (the owner), so there are three possible directory requests:

 Read miss—The owner processor is sent a data fetch message, which causesthe state of

the block in the owner's cache to transition to shared and causesthe owner to send the

data to the directory, where it is written to memory andsent back to the requesting

processor. The identity of the requesting processoris added to the set Sharers, which still

contains the identity of the processorthat was the owner (since it still has a readable

copy).

 Data write back—The owner processor is replacing the block and thereforemust write it

back. This write back makes the memory copy up to date (thehome directory essentially

becomes the owner), the block is now uncached,and the Sharers set is empty.

 Write miss—The block has a new owner. A message is sent to the old owner,causing the

cache to invalidate the block and send the value to the directory,from which it is sent to

the requesting processor, which becomes the newowner. Sharers is set to the identity of

the new owner, and the state of theblock remains exclusive.

First Optimization: Larger Block Size to Reduce Miss Rate

 The simplest way to reduce miss rate is to increase the block size.

 Larger block sizes will reduce also compulsory misses. This reduction occurs because the

principle of locality has two components: temporal locality and spatial locality. Larger

blocks take advantage of spatial locality.

 Larger blocks increase the miss penalty and larger blocks may increase conflict misses

andeven capacity misses if the cache is small.

Second Optimization: Larger Caches to Reduce Miss Rate

 It reduces the capacity misses.

 The obvious drawback is potentially longer hit time and higher cost and power. This

technique has been especially popular in off-chip caches.

Third Optimization: Higher Associativity to Reduce Miss Rate

 It reduces the conflict misses.

 The second observation, called the 2:1 cache rule of thumb, is that a direct mapped cache

of size JV has about the same miss rate as a two-way set-associative cache of size N/2.

 But it increases the hit time.

Four Memory Hierarchy Questions

Q1: Where Can a Block Be Placed in a Cache?

If each block has only one place it can appear in the cache, the cache is said tobe direct mapped.

The mapping is usually(Block address) MOD (Number of blocks in cache).If a block can be

placed anywhere in the cache, the cache is said to be fullyassociative. If a block can be placed in

a restricted set of places in the cache, the cache isset associative. A set is a group of blocks in the

cache. A block is first mappedonto a set, and then the block can be placed anywhere within that

set. The setis usually chosen by bit selection; that is,

(Block address) MOD (Number of sets in cache)

If there are n blocks in a set, the cache placement is called n-way setassociative.

Q2: How Is a Block Found If It Is in the Cache?

Caches have an address tag on each block frame that gives the block address. The tag of every

cache block that might contain the desired information is checked to see if it matches the block

address from the processor. As a rule, all possible tags are searched in parallel because speed is

critical.

Figure shows how an address is divided.The first division is between the block address and the

block offset. The blockframe address can be further divided into the tag field and the index field.

Theblock offset field selects the desired data from the block, the index field selectsthe set, and

the tag field is compared against it for a hit.

Q3: Which Block Should Be Replaced on a Cache Miss?

When a miss occurs, the cache controller must select a block to be replaced withthe desired data.

Thereare three primary strategies employed for selecting which block to replace:

 Random—To spread allocation uniformly, candidate blocks are randomlyselected. Some

systems generate pseudorandom block numbers to get reproduciblebehavior, which is

particularly useful when debugging hardware.

 Least-recently used (LRU)—To reduce the chance of throwing out informationthat will

be needed soon, accesses to blocks are recorded. Relying on thepast to predict the future,

the block replaced is the one that has been unusedfor the longest time. LRU relies on a

corollary of locality: If recently usedblocks are likely to be used again, then a good

candidate for disposal is the least-recently used block.

 First in, first out (FIFO)—Because LRU can be complicated to calculate,

thisapproximates LRU by determining the oldest block rather than the LRU.

Q4: What Happens on a Write?

Reads dominate processor cache accesses. All instruction accesses are reads, and most

instructions don't write to memory.Making the common case fast means optimizing caches for

reads, especially since processors traditionally wait for reads to complete but need not wait for

writes.

The blockcan be read from the cache at the same time that the tag is read and compared, sothe

block read begins as soon as the block address is available.Such optimism is not allowed for

writes. Modifying a block cannot beginuntil the tag is checked to see if the address is a hit.

Because tag checking cannotoccur in parallel, writes normally take longer than reads.

The write policies often distinguish cache designs. There are two basicoptions when writing to

the cache:

• Write through—The information is written to both the block in the cache andto the block in the

lower-level memory.

• Write back—The information is written only to the block in the cache. Themodified cache

block is written to main memory only when it is replaced.

	IAT-II Question paper of 10CS74 Advanced Computer Architecture Nov-2017 - RESHMA PRAKASH.pdf (p.1-2)
	IAT-II Question paper with solution of 10CS74 Advanced Copmuter Architecture Nov-2017 RESHMA PRAKASH.pdf (p.3-21)

