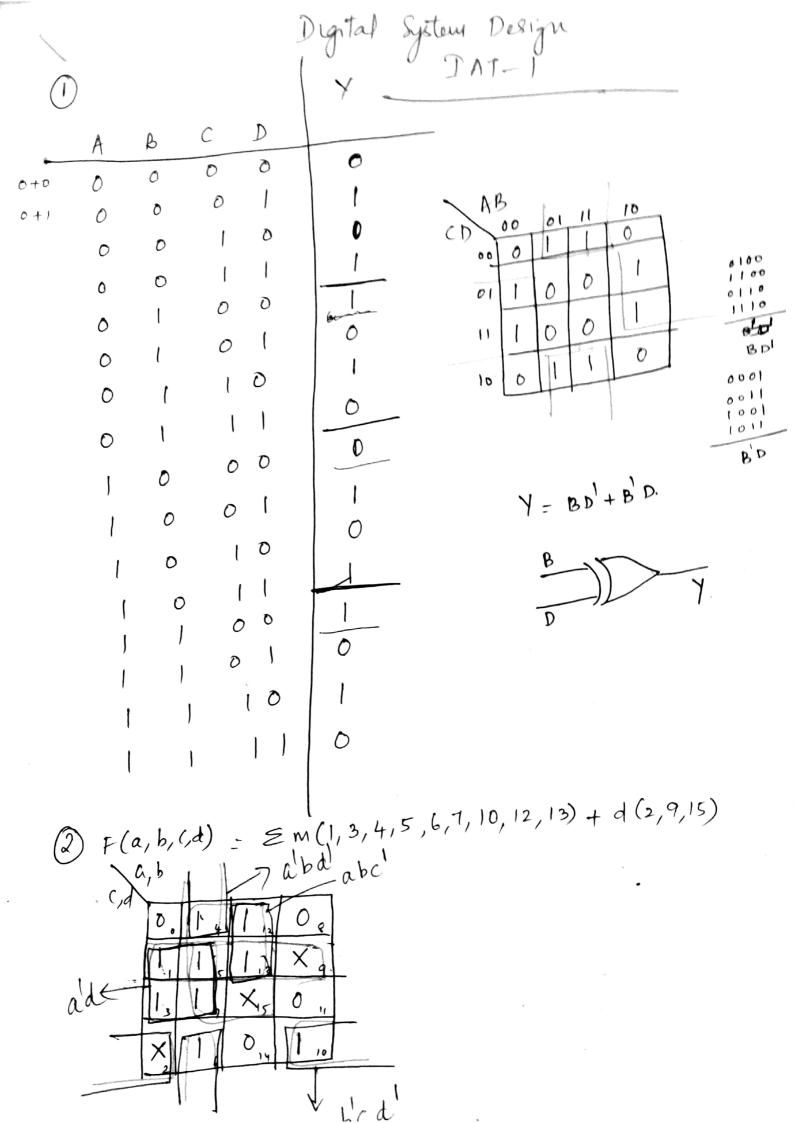
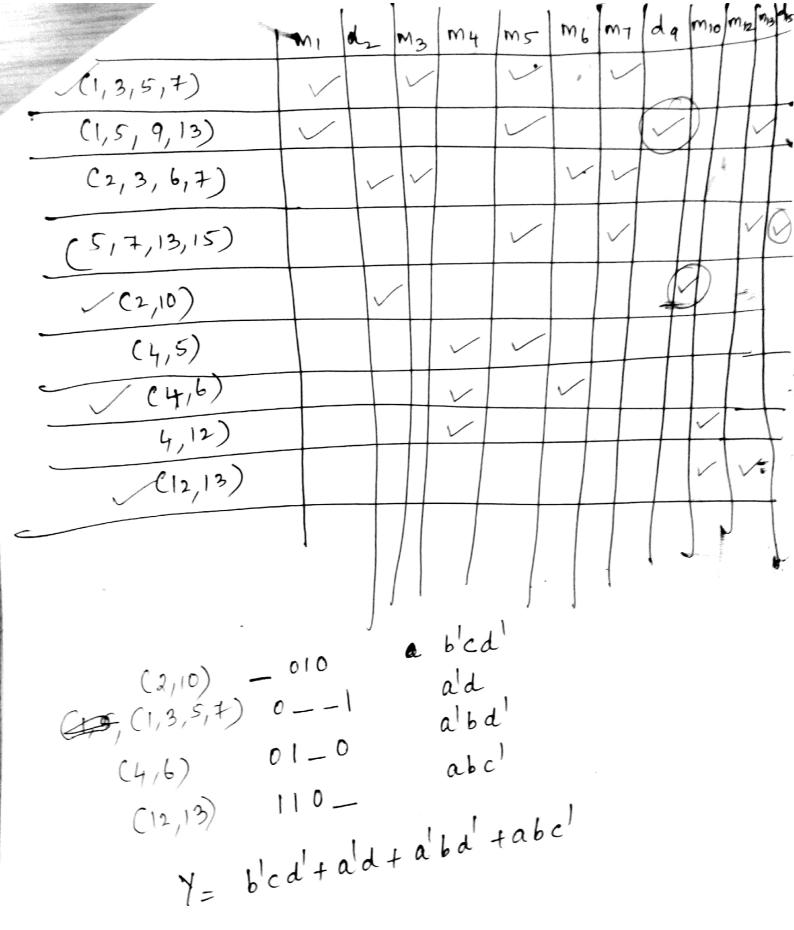
CMR
INSTITUTE OF
TECHNOLOGY

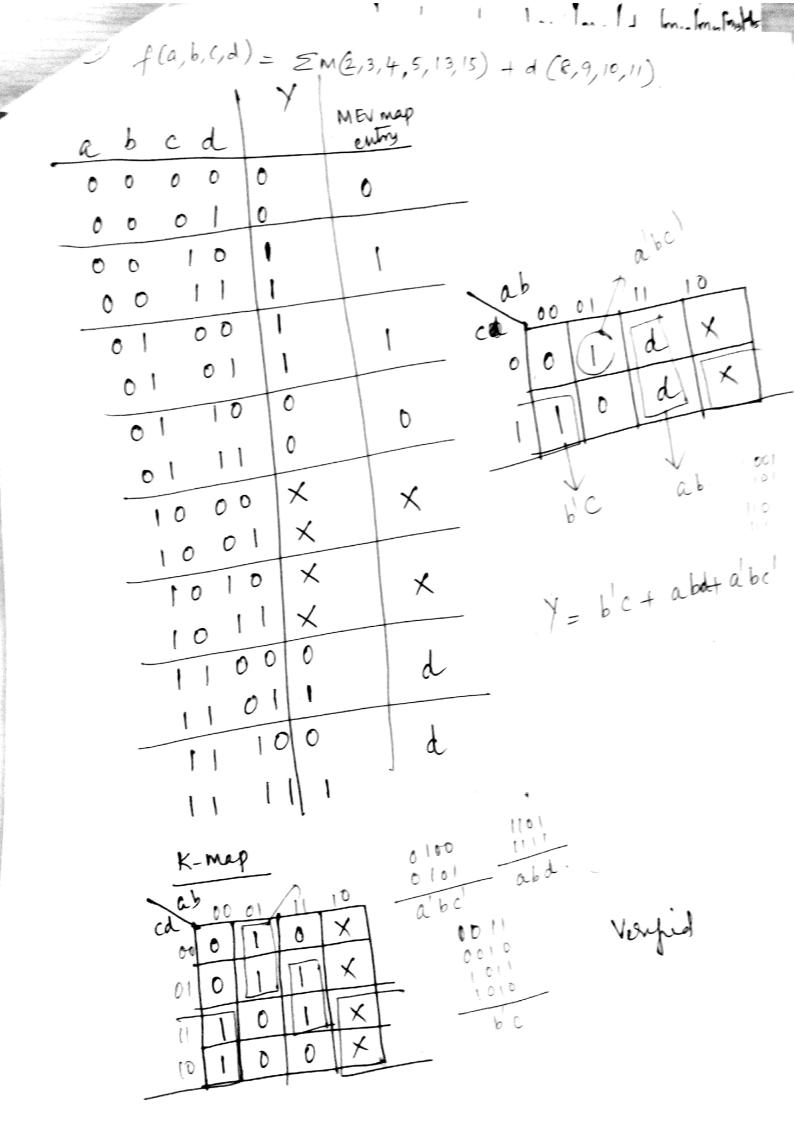
TICNI					
USIN					

Internal Assesment Test - I


Sub:	DIGITAL SYSTEM DESIGN Cod									15EE	35	
Date:	20/ 09/ 2017	Duration:	90 mins	Max Marks:	50	Sem:	7th	Bra	nch:	EEI	EEE	
											BE	
											RBT	
	Design a logic circuit which takes two,2-bit binary numbers as its input and generates an output equal to 1,when sum of two numbers is odd, use K-map to simplify.								10	C305.2	L3	
	Find a minimum SOP solution using Quine-McCluskey method $F(a,b,c,d)=\sum m(1,3,4,5,6,7,10,12,13)+d(2,9,15)$.								10	C305.1	L3	
	3 Simplify $f(a,b,c,d)=\sum m(2,3,4,5,13,15)+dc(8,9,10,11)$ using MEV technique taking least significant bit as map entered variable.								10	C305.1	L3	
	Implement the function using active low output dual 2:4 decoder line decoder IC 74139 i) $F_1(A,B,C)=\sum m(0,1,2,5)$ ii) $F_2(A,B,C)=\pi M(1,3,4,7)$								10	C305.1	L3	
	Design a priority encoder for a system with a 3 inputs, the middle bit with highest priority encoding to 10,the MSB with next priority encoding to 11,while the LSB with least priority encoding to 01.								10	C305.1	L3	
6	Realize the following B i) 16 to 1 MUX		n Y=f(w,x,y X iii)4:1		10,15)	using :			10	C305.1	L3	

CMR	
INSTITUTE OF	
TECHNOLOGY	




Internal Assesment Test - I

			michiai	Assesment 10	St 1							
Sub:	DIGITAL SYSTEM DESIGN Co.									15EE35		
Date:	20/ 09/ 2017	Duration:	90 mins	Max Marks:	50	Sem:	7th	Branch: EEE				
		A	nswer Any	y FIVE FULL (Question	S						
										OE	BE	
									Marks	CO	RBT	
Design a logic circuit which takes two,2-bit binary numbers as its input and generates an output equal to 1, when sum of two numbers is odd, use K-map to simplify.									10	C305.2	L3	
Find a minimum SOP solution using Quine-McCluskey method $F(a,b,c,d)=\sum m(1,3,4,5,6,7,10,12,13)+d(2,9,15)$.									10	C305.1	L3	
3 Simplify $f(a,b,c,d)=\sum m(2,3,4,5,13,15)+dc(8,9,10,11)$ using MEV technique taking least significant bit as map entered variable.								10	C305.1	L3		
Implement the function using active low output dual 2:4 decoder line decoder IC 74139 $i)F_1(A,B,C)=\sum m(0,1,2,5)$ $ii)F_2(A,B,C)=\pi M(1,3,4,7)$								10	C305.1	L3		
5 Design a priority encoder for a system with a 3 inputs, the middle bit with highest priority encoding to 10,the MSB with next priority encoding to 11,while the LSB with least priority encoding to 01.								10	C305.1	L3		
	Realize the following B i) 16 to 1 MUX		n Y=f(w,x,y X iii)4:1 l		10,15) ι	ising:			10	C305.1	L3	

0001 0010 m Minterms 0100/ da 0001~ 00100 M 1 2 2 0011 M4 M3 0011 0100/ 0101~ ms 0101/ M4 0110 M5 0110 0111 Mb Mb 1001 1001 M7 dq 1010~ 1010/ da MID 1100~ 1100 M12 MID 1101 ma 0111 MIS m12 1111 d15 M13 1101/ dis 1111/ (12,13) 110-(1,3) 00-15 (1,5) 0-01 (7,15) -111-(1,9) -001 (13,15) 11-1-(2,3) 001-(1,3,5,7) 0 - - 1 (2,6) 0-10 (2,10) - 010-(1,5₁3,7) (1,5,9,13) -- 01 (4,5) 010-(4,6) 01-0 (2,3,6,7) 0-1-(4,12) -100 C2,6,3,7) B-(3,7) 0-111 (5,7,13,15) - 1-1 (s, 7) 01-1 (6,7) 01 + 0-(9,13) 1-01

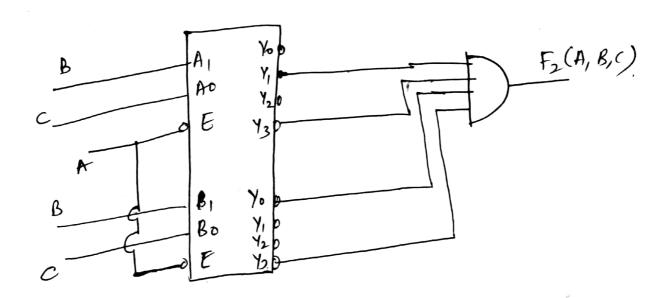
$$(4) F_{1}(A,B,C) = \sum_{i} M(0,1,2,5)$$

$$A_{1} = Y_{1}$$

$$A_{2} = Y_{1}$$

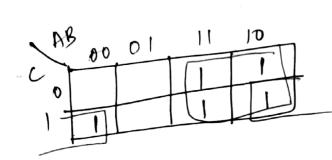
$$A_{3} = Y_{3}$$

$$B = A_{1} = Y_{1}$$

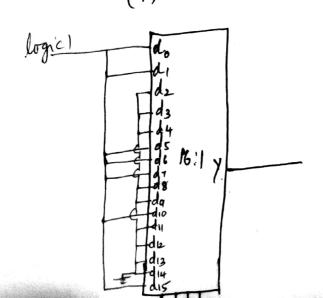

$$A_{2} = Y_{3}$$

$$B_{3} = A_{4}$$

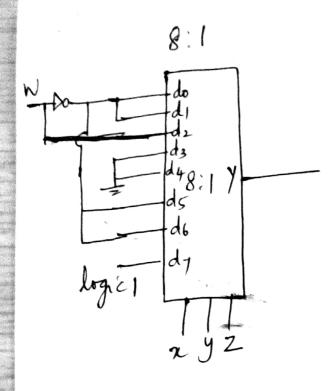
$$A_{5} = Y_{1}$$

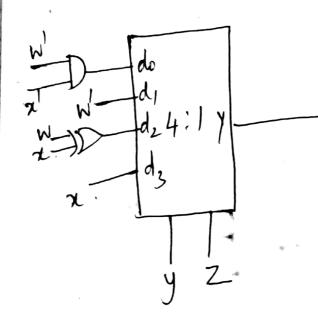

$$B_{6} = Y_{1}$$

$$B_{6} = Y_{1}$$


$$X = \leq m(1,2,3)$$

$$Y = \leq m(1,4,5,6,7).$$
AB 00 01 11 10 0 0




A'C+A'B

(i) 16:1

N N	8	9 (0		11	3/10	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1
	do	di	920	13 0	4		1	١
	W	W	W	Ô	0	N		•

		1				
		7: 1 do,	di	dz	d3,	,
	Wx	0		2	3	
•	Wx.	4	(5)	6	9	
•	WX	8	9.2	10]]	-
	WX	12	13	14	15)
	40 /-					
		W	ι^{l}			1

$$d_1 \rightarrow w'x' + w'x = w'(x'+x)$$

$$d_2 = w'x + wx'$$

$$d_3 = w'x + wx = x(w+w')$$

$$= x$$