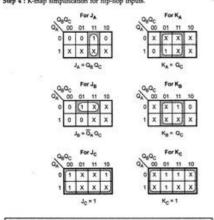
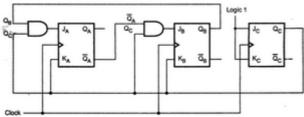

CMR INSTITUTE OF TECHNOLOGY




Internal Assesment Test - II

Sub:	DIGITAL SYSTE	EM DESIGN						Cod	e:	15EE	35
Date:	08/ 11/ 2017	Duration: 90) mins	Max Marks:	50	Sem:	3 RD	Brar	nch:	EEE	Ľ
	,	Ansv	wer Any	FIVE FULL (Question	S		I	, ,		
									Marks	CO	E RBT
	Design a synchronous using sequential circui		using JK	flip flop and	represen	t the equ	ations	}	10	CO3	L3
	Convert JK flip flop in		flop.Rep	presnt symboli	cally.				10	CO3	L2
	Explain the working of equations of SR flip floor		s switch	debouncer and	l obtain t	he chara	cteris	tic	10	CO3	L2
4	Explain the working of function table logic dia	f Master slave J		p with the hel	p of timi	ing diagi	am,		10	CO3	L2
5	Write short notes on stransformed into a ring	shift registers. Ex	xplain ho		ft registe	r can be			10	CO4	L2
6	Construct excitation sequential circuit show	table, transition			nd state	diagra	m for	the	10	CO3	L3
	\bar{x} \bar{B} Design a synchr $0,1,2,4,5,6,0,1,2$ Design a sequential circ		and stat	JK flip for diagram. The given state of the given	•		•	uence	10	CO4	L3
		1/0	Fig	0/1 g 8		ż					

Pn	esent st	ate	,	lext stat		Flip-flop inputs					
Q _A	Qa	Qc	Que	Qs+t	Qc+1	JA	KA	Ja	Ka	Jo	K,
0	0	0	0	0	1	0	×	0	×	1	×
0	0	1	0	1	0	0	×	1	×	×	1
0	1	0	0	. 1	1	0	×	×	0	1	×
0	10	1	1	0	0	1	×	×	1	×	1
1	0	0	1	0	1	ж	0	0	×	1	×
1	0	1	0	0	0	×	1	0	×	×	1
1	1	0	×	×	x	×	×	×	x	×	×
1	1	1	×	×	×	×	×	×	×	×	×

Step 4 : K-map simplification for flip-flop inputs.

2.

IK Filp-Flop to T Flip-Flop
The excitation table for above conversion is as shown in Table 5.10.

Input	Present state	Next state	Flip-flop	p inputs	
T	Q,	Q 1	JA	K _A	
0	0	0	0	X	
0	1	1	×	0	
1	0	1	1	x	
CONTRACTOR OF THE PARTY OF THE	SHITTER STREET,	STATE OF THE PARTY	AND VALUE OF	District of	

Table 5.10

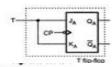
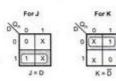

K-map simplification

Fig. 5.44


Logic diagram

5.11.5 JK Flip-Flop to D Flip-Flop

The excitation table for above conversion is as shown in the Table 5.11.

Input	Present state	Next state	Flip-flog	inputs
D	Q _m	Q 1	J	к
0	0	0	0	X
0	(P. 40)	0	X	
1	0	1	1	х
1	1	1	×	0

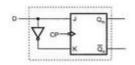
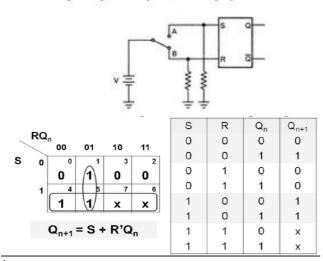



Fig. 5.46

Fig. 5.47 JK to D

3.

One way to avoid key debounce problem is to use SR latch. The circuit used to avoid keybounce with SR latch is called a switch debouncer. The Fig. 5.7 shows the switch debouncer circuit and its waveforms. When key is at position A, the output of SR latch is logic 1, and when key is at position B, the output of SR latch is logic 0. It is important to note that, when key is in between A and B, SR inputs are 00 and hence output does not change, preventing debouncing of key output. In other words, we can say that the output does not change during transition period, eliminating key debounce.

4.

The master-slave combination can be constructed for any type of flip-flop. Fig. 5.29 shows one way to build a JK master-slave flip-flop. It consists of clocked JK flip-flop as a

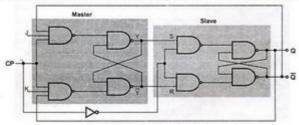


Fig. 5.29 Master-slave JK flip-flop

CP	Q.	J	к	Y	Q	
	0	0	0	0	NC	
7L	0	0	0	NC	. 0	
	0	0	1	0	NC	
7_	0	0	1	NC	0	
	. 0	1	0	1	NC	
7_	0	1	0	NC	1	
	0	1	1	1	NC	
7_	0	1	1	NC	1	
F	1	0	0	1	NC	
-L	1	0	0	NC	1	
	1.	0	1	0	NC	
7_	1	۰	1	NC	۰	
	1	1	0	1	NC	
7L	1	1	0	NC	1	
	1	1	1	0	NC	
7	1	1	1	NC		

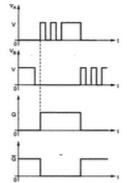


Fig. 5.7 (b) Waveforms of switch debouncer

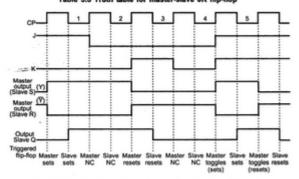
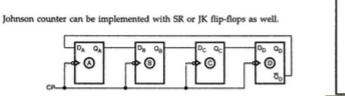
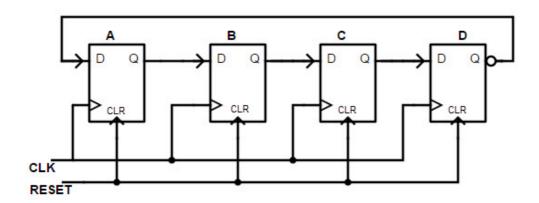



Fig. 5.30 Input and output waveforms of master-slave JK flip-flop


5. Shift Registers are used for data storage or for the movement of data and are therefore commonly used inside calculators or computers to store data such as two binary numbers before they are added together, or to convert the data from either a serial to parallel or parallel to serial format. The individual data latches that make up a single shift register are all driven by a common clock (Clk) signal making them synchronous devices.

- Serial-in to Parallel-out (SIPO) the register is loaded with serial data, one bit at a time, with the stored data being available at the output in parallel form.
- Serial-in to Serial-out (SISO) the data is shifted serially "IN" and "OUT" of the register, one bit at a time in either a left or right direction under clock control.
- Parallel-in to Serial-out (PISO) the parallel data is loaded into the register simultaneously and is shifted out of the register serially one bit at a time under clock control.
- Parallel-in to Parallel-out (PIPO) the parallel data is loaded simultaneously into the register, and transferred together to their respective outputs by the same clock pulse.

Clock Pulse	QA	QB	O _C	QD	
0	0	0	0	07	
1	1.	0	0	0 \	
2	1	1	0	0 1	ı
3	1	1	1	0	
4	1	1	1	1 1	ı
5	0	1	1	1	ı
6	0	0	1	1 / 1	ı
7	0	0	0	1/	ı

The circuit diagram of the ring counter is shown below.

6.

Solution: Let us begin by writing the excitation expressions which are the flip-flop input expressions.

$$D_z = \overline{A}X + BX$$

$$T_s = B \overline{X} + A \, \overline{B} \, X$$

The output expression is

This is also a Moore machine since Y=f(Q). Let us now evaluate the excitation and output expressions as shown in Fig. 7.23.

A	\boldsymbol{B}	X	Ā	\overline{B}	\overline{X}	$\overline{A}X$	BX	AB	ABX	BX	D,	T_{θ}	Y = AB
0	0	0	1	1	1	0	0	0	0	0	0	0	0
0	0	1	1	1	0.	1	0	0	0	0	1	0	0
0	1	0	1	0	1	0	0	0	0	1	0	1	0
0	1	1	1	0	0	1	1	0	0	0	1	0	0
1	0	0	0	1	1	0	0	1	0	0	0	0	0
1	0	1	0	1	0	0	0	1	1	0	0	1	0
1	1	0	0	0	1	0	0	.0	0	1	0	1	1
1	1	1	0	0	0	0	1	0	0	0	1	0	1

Fig. 7.23 Evaluation of excitation and output expressions

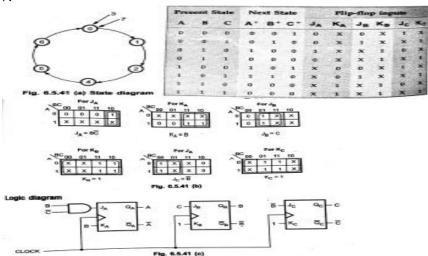
We will now construct the excitation table as shown in Fig. 7.24.

Presen	r Excitati	Excitation D., T.				
A E	For	input	For input			
0 0	0.0	1,0	0	0		
0 1	0,1	1,0	0	0		
1 0	0.0	0,1	0	0		
1 1	0, 1	1,0	1	1		

Fig. 7.24 Excitation table for Example 7.13

The transition table is constructed from the excitation table as shown in Fig. 7.25.

Pre	sent	Next sto	ite A* B*	Own	pur Y		
state		For	imput	For input			
A	В	X = 0	X=1	X = 0	X=1		
0	0	0.0	10	0	0		
0	1	0.0	11	0	0		
1	0	0.0	01	0	0		
1	1	0.0	11	1	1		


Fig. 7.25 Transition table for Example 7.13

Consider present state AB=00. The next state is A^*B^* . Here, A^* depends on the D input which is 0 for X=0 and 1 for X=1. Since $A^*=D$ for a D flip flop, $A^*=0$ for X=0 and $A^*=1$ for X=1. Now B^* depends on the T input which is 0 for both X=0 and X=1 and hence $B^*=B$ (there is no toggle) for both X=0 and X=1. Thus, the next state for present state AB=00 is $A^*B^*=00$ for X=0 and $A^*B^*=10$ for X=1. The next state for all the other states are similarly filled in table shown in Fig. 7.25. Let us label the states as 00=a, 01=c and 11=d. By substituting these symbols for the states in the transition table, we can write the state table as shown in Fig. 7.26.

Present	Next	state	Output Y For input			
state	For	input				
	X = 0	X=1	X=0	X = 1		
a	a	c	0	0		
. b	a	d	0	0		
c	a	6	0	0		
d	a	d	1	1		

Fig. 7.26 State table for Example 7.13

7.

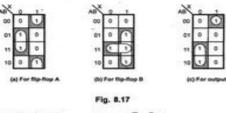
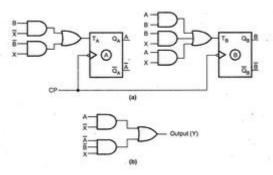

Present state		Input	Next	state	Flip-flog	p Inputs	Output
	8	×	A	B	T _A	5	Y
0	0	0	0	0	0	0	0
0	0	1	1	0	1	0	1
0	1	0	1	1	1	0	0
0	1	1	0		0	1	0
1	0	0	1	0	0	0	1
1	0	1	0	1	1	1	0
1	1	0	0		1	1	1
1	1	1	- 1	0	0	1	0

Table 8.5 Circuit excitation table

The first row of circuit excitation table shows that there is no change in the state for both flip-flops. The transition from $0 \to 0$ for T flip-flop requires input T to be at logic 0. The second row shows that flip-flop A has transition $0 \to 1$. It requires the input T_i to be at logic 1. Similarly, we can find inputs for each flip-flop for each row in the table by referring present state, next state and excitation table.

Let us use K-map simplification to determine the flip-flop input functions and circuit output functions.

K-map simplification



Therefore, input function for

 $T_A \ = \ B \overline{X} + \overline{B} \, X,$

 $T_B = AB + BX + AX$, and

Circuit output function $= A\overline{X} + \overline{A} \overline{B} X$

