

Internal Assesment Test - I

Sub:	Analog Electronics	3						Code:	15EC32
Date:	18 / 09 / 2017	Duration:	90 mins	Max Marks:	50	Sem:	3rd	Branch:	ECE (C)
		A	nswer An	y FIVE FULL ()uestion	S			

	Manle	OBE	
	Marks	CO	RBT
1 (a) Analyze the Common base configuration with a circuit diagram.	[05]	CO1	L4
(b) Obtain Z_i , Z_0 , A_v and A_i for CB configuration using h-parameters.	[05]	CO1	L4
Apply the complete hybrid equivalent model, to determine the input impedar impedance, voltage gain and current gain of transistor amplifier in terparameters.		CO1	L3
Explain the BJT amplifier transistor modeling in detail.	[10]	CO1	L4
Draw the emitter follower configuration. Derive its input impedance, output in voltage gain and current gain using h-parameters.	mpedance, [10]	CO1	L3
5 Explain the Darlington Connection with a neat diagram. Analyze the l	Darlington [10]	CO1	L4

For the network shown in the figure, calculate r_{e_i} Z_{i_i} Z_{0} $(r_{0}=$) and A_{v_i} $(r_{0}=$.).

connection DC bias condition using emitter follower configuration.

[10]	CO1	L3		

IAT-1 (Analog Electronics)
Solutions

1)

Common-Base Configuration:

(b) CB configuration using b-parameters:

Input împedance, Zi = Rellhib

Out put impedance, Zo = Re 11/hob = Re

2) Complete Hybrid Equivalent Model:

current gain, $Ai = \underline{I_o}$ Apply kcl to the deatput $I_o = hf \cdot I_b + I$ $I_o = hf \cdot I_b - ho \cdot I_o \cdot R_L$ $Ai = \underline{I_o} = hfe$ $I_i = hf \cdot R_L$

Modeling-approximates the actual behavior of semiconductor.

3 types (1) hybrid equivalent - approximation based on datasheet

- (2) remodel-actual operating conditions.
- (3) hybrid pi model-feedback effect.

- The ac equivalent of a transistor network

- (1) setting all de sources to zero
- (2) Replacing all capacitors by a short circuit.
- (3) Redraw the network
- 4) Emitter-Follower configuration using h-parameters

Input impedance, Zi=RB||Zb Zb=hie+hfe.RE

Zb=hfe. RE

Output impedance, Zo = RE | hie/hfe

Current Gain, Ai = Io = h.fe. RB

RB+Zb

