CMR

INSTITUTE OF
TECHNOLOGY
ush [[[L [[[] |
Internal Assesment Test — | and solutions and scheme
Sub: | Microcontroller 8051 (Open Elective) Code: 15EC563
Date: 21/09/ 2014 Duration: 90 mins Max Marks: 50 Sem: V Branch: CSE/ISE
Marks
1 |Explain the architecture of 8051 Microcontroller with neat block diagram. [10]
Solution:-
Arithmetic Special- £ o l: 170 Block di agram =5
and PSW Function £ P 5 [207 marks
Logic Unit Registers — 2 & |- 0007
RAM —
8-Bit Data and }—
8 B Address Bus = = Exp| anations of
= ™ E__ — VO
I | — each block =5
marks
DPTR
P DPH AOM —
bEL £ i T
L 5 [& [asnis
16-Bit Adress Bus I
P 170
—_— ; pecial- = ™ }— Interrupt
EA = gyl Byte/Bit Functi] S 1 < =
i B T 20 [B [E e,
XTAL1 — System Register & T e
ATALZ — 1r|tf3rrupts Bank 3]
RESET —j Timers PCON |
Data But . |
b Memary Contral Register SEUE :
[TCON |
I Register TMOD |
Bank 1 TLO |
l THO
] Registar TLI !
| Bank 0 ™ i
| Internal RAM Structure :
o m e e 3 4
e 8051 has 4 K Bytes of internal ROM. The address space is from 0000 to OFFFh. If
the program size is more than 4 K Bytes 8051 will fetch the code automatically
from external memory.
e Accumulator is an 8 bit register widely used for all arithmetic and logical
operations. Accumulator is also used to transfer data between external memory. B
register is used along with Accumulator for multiplication and division. A and B
registers together is also called MATH registers.
e PSW (Program Status Word). This is an 8 bit register which contains the arithmetic
status of ALU and the bank select bits of register banks.
Cc A F R R O - P
Yy ¢ 0 S S V
1 0
CY - carry flag
AC - auxiliary carry flag
F0 - available to the user for general purpose

RS1,RSO - register bank select bits
OV - overflow
P - parity

Stack may reside anywhere on the internal RAM. On reset, SP is initialized to 07 so
that the default stack will start from address 08 onwards.

e Data Pointer (DPTR) - DPH (Data pointer higher byte), DPL (Data pointer lower
byte). This is a 16 bit register which is used to furnish address information for
internal and external program memory and for external data memory.

e Program Counter (PC) - 16 bit PC contains the address of next instruction to be
executed. On reset PC will set to 0000. After fetching every instruction PC will
increment by one.

e Stack Pointer (SP) - it contains the address of the data item on the top of the stack.

Distinguish between Microprocessor and Microcontroller. [10]
Solution:-

Microprocessor Microcomirodfer

A-ﬁ'm'ti:_m legi AT ey | 10 Ports | 15 Mal’kaOI’ ea:h
Connter 1
— difference.
Jrr—— S Inzarmuze
[5
Somking P et Teteamal Cire=dm
[aharnal FAR RO

| Progmans Coeoar | | Emzck Podnrar | | Sk Pt | | Chock |

| Clock Circumic | | Iztmrrapt circnis | | Progran Cosstar |

Flock diggrom of microprocessor Rlack diog rom of mmtcroocondrodier

Micoprocessor contalns ALLL General parpose | Mlioooconboldler ocontafns the dircuitry of

registers, stack pointer, program coumter, dock | mcoprocessor, and in addition it has ballit in

i neg clircuit, Interrupt dircoit ROM, RAM, 10 Devices, Timers iCounters atc

It bas mamny instructHons to Mmowe dats between | It has few instroctions o mowe data betwesn

memory and TP memory and CPL

Few bit handling Instrection It ha=s many bit banding instroctons

Less number of ploes are mouldfhenctional More number of pdnes are muold fisncticnal

Single memory map for dam amed coode | Scparate memeory map for data amd coude

[program]) [pragram]

fuocess time for memory and 10 are more Less access time for ballt in memory amd 100

Miooprooessor based system requires | It regquires less addidonal hardwares

additdonal hardwrare

More Aexible in the design podnt of view Less Aexible since the addittomnal clroalts which s

resding inzslde the microcontroller s Axed for a
partcualar microcontmolber

Large nomber of nstroctions with Bexible | Limlted poumber of iostrocHons with few

addressing modes addressng modes
Explain Memory organization in 8051. [10]
Solution:-

RAM memory

organization block
diagram 6 marks

Rom 2 Marks

Explanation of SFR
2 Marks

Internal RAM organization

R7 wF |
R6 1E
RS Fi) ™
R4 ic e x| F 78 7F
R}; ii ﬁ x| 77 70 7E
) &F 68
Ri 19 i m
RO g | . | 57 o
== a[= =
57 50
RS 15 o 1
R4 14 b wl| 18
R3 13 ﬁ | 47 40
B 3£ l:: 3F 38
Ri 11 m
RO w | . % | 37 30
R7 0OF 2F 28
s | 2
R6 OE 8 — = 32
RS oD — 23 31
2] x| el = 30
< 17 10
Rz 04 << B
Ri 09 as 11 | OF 08
Al Ll o = w| 07 Lo General purpose memory
R7 07
R6 06
RS 05 =
R4 04 nd Bit addressable memory
R3 03 :5
RzZ 0z s
R1 01
RO o0 |

Register Banks: 00h to 1Fh. The 8051 uses 8 general-purpose registers R0 through R7
(RO, R1, R2, R3, R4, R5, R6, and R7). There are four such register banks. Selection of
register bank can be done through RS1,RS0 bits of PSW. On reset, the default Register Bank
0 will be selected.

Bit Addressable RAM: 20h to 2Fh . The 8051 supports a special feature which allows
access to bit variables. This is where individual memory bits in Internal RAM can be set or
cleared. In all there are 128 bits numbered 00h to 7Fh. Being bit variables any one variable
can have a value 0 or 1. A bit variable can be set with a command such as SETB and cleared
with a command such as CLR.

Example instructions are:

SETB 25h ; sets the bit 25h (becomes 1)

CLR 25h ; clears bit 25h (becomes 0)

Note, bit 25h is actually bit 5 of Internal RAM location 24h.

The Bit Addressable area of the RAM is just 16 bytes of Internal RAM located between 20h
and 2Fh.

General Purpose RAM: 30h to 7Fh. Even if 80 bytes of Internal RAM memory are available
for general-purpose data storage, user should take care while using the memory location from
00 -2Fh since these locations are a so the default register space, stack space, and bit addressable
space. It is agood practice to use general purpose memory from 30 — 7Fh. The general purpose
RAM can be accessed using direct or indirect addressing modes.

Explain Arithmetic and logical instructions of 8051 with examples.

Solution:-

Arithmetic instructions.

The 8051 can perform addition, subtraction. Multiplication and division operations on 8
bit numbers.

Addition

In this group, we have instructions to

i. Add the contents of A with immediate data with or without carry.

i. ADD A, #45H

ii. ADDC A, #0B4H

ii. Add the contents of A with register Rn with or without carry.

i. ADD A, R5

ii. ADDC A, R2

iii. Add the contents of A with contents of memory with or without carry using direct and
indirect addressing

i. ADD A, 51H

ii. ADDC A, 75H

[10]

Each instructions

1.5 marks (includes

explanation with
example)

iii. ADD A, @R1
iv. ADDC A, @RO

CY AC and OV flags will be affected by this operation.

Subtraction

[n this group, we have instructions to

i. Subtract the contents of A with immediate data with or without carry.
i. SUBB A, #45H

ii. SUBB A, #0B4H

ii. Subtract the contents of A with register Rn with or without carry.

i. SUBB A, R5

ii. SUBB A, R2

iii. Subtract the contents of A with contents of memory with or without carry using direct
and indirect addressing

i. SUBB A, 51H

ii. SUBB A, 75H

iii. SUBB A, @R1

iv. SUBB A, @R0O

CY AC and OV flags will be affected by this operation.

Multiplication

MUL AB. This instruction multiplies two 8 bit unsigned numbers which are stored in A and
B register. After multiplication the lower byte of the result will be stored in accumulator
and higher byte of result will be stored in B register.

Eg. MOV A #45H ;[A]=45H

MOV B,#0F5H ;[B]=F5H

MUL AB ;[A] x [B] = 45 x F5 = 4209

[A]=09H, [B]=42H

Division

DIV AB. This instruction divides the 8 bit unsigned number which is stored in A by the 8
bit unsigned number which is stored in B register. After division the result will be stored in
accumulator and remainder will be stored in B register.

Eg. MOV A,#45H ;[A]=0ES8H

MOV B,#0F5H ;/B]=1BH

DIV AB ;[A] / [B] = E8 /1B = 08 H with remainder 10H

[A] = 08H, [B]=10H

DA A (Decimal Adjust After Addition).

‘When two BCD numbers are added, the answer is a non-BCD number. To get the result in BCD, we
use DA A instruction after the addition. DA A works as follows.

> [f lower nibble is greater than 9 or auxiliary carry is 1, 6 is added to lower nibble.

> [f upper nibble is greater than 9 or carry is 1, 6 is added to upper nibble.

Eg 1: MOV A, #23H

MOV R1,#55H

ADD A,R1 // [A]=78

DA A // [A]=78 no changes in the accumulator after da a

Eg 2: MOV A, #53H

MOV R1,#58H

ADD A,R1 // [A]=ABh

DA A //[A]=11, C=1.ANSWERIS 111. Accumulator data is changed after DA A

Increment: increments the operand by one.

INC A INC Rn INC DIRECT INC @Ri INCDPTR

INC increments the value of source by 1. If the initial value of register is FFh, incrementing the value
will cause it to reset to 0. The Carry Flag is not set when the value "rolls over" from 255 to 0.

In the case of "INC DPTR", the value two-byte unsigned integer value of DPTR is incremented. If the
initial value of DPTR is FFFFh, incrementing the value will cause it to reset to 0.

Decrement: decrements the operand by one.
DEC A DEC Rn DEC DIRECT DEC @Ri
DEC decrements the value of source by 1. If the initial value of is 0, decrementing the value will cause it

to reset to FFh. The Carry Flag is not set when the value "rolls over" from O to FFh.

DIV AB. This instruction divides the 8 bit unsigned number which is stored in A by the 8
bit unsigned number which is stored in B register. After division the result will be stored in
accumulator and remainder will be stored in B register.

Eg. MOV A #45H ;[A]=0E8H

MOV B,#0F5H ;[B]=1BH

DIV AB ;[A] / [B] = E8 /1B = 08 H with remainder 10H

[A] = 08H, [B]=10H

DA A (Decimal Adjust After Addition).

'When two BCD numbers are added, the answer is a non-BCD number. To get the result in BCD, we
use DA A instruction after the addition. DA A works as follows.

> [f lower nibble is greater than 9 or auxiliary carry is 1, 6 is added to lower nibble.

>If upper nibble is greater than 9 or carry is 1, 6 is added to upper nibble.

Eg 1: MOV A#23H

MOV R1,#55H

ADD A,R1 // [A]=78

DA A // [A]=78 no changes in the accumulator after da a

Eg 2: MOV A #53H

MOV R1,#58H

ADD A,R1 // [A]=ABh

DA A //[A]=11, C=1.ANSWERIS 111. Accumulator data is changed after DA A

Increment: increments the operand by one.

INC A INC Rn INC DIRECT INC @Ri INCDPTR

INC increments the value of source by 1. If the initial value of register is FFh, incrementing the value
will cause it to reset to 0. The Carry Flag is not set when the value "rolls over" from 255 to 0.

In the case of "INC DPTR", the value two-byte unsigned integer value of DPTR is incremented. If the
initial value of DPTR is FFFFh, incrementing the value will cause it to reset to 0.

Decrement: decrements the operand by one.
DEC A DEC Rn DEC DIRECT DEC @Ri

DEC decrements the value of source by 1. If the initial value of is 0, decrementing the value will cause it
to reset to FFh. The Carry Flag is not set when the value "rolls over” from O to FFh.
leaving the resulting value in destination. The value in source is not affected.

Logical OR

ORL destination, source: ORL does a bitwise "OR" operation between source and destination,
ORL A,#DATA ORL A, Rn

ORL A,DIRECT ORL A,@Ri

ORL DIRECT,A ORL DIRECT, #DATA

Logical Ex-OR

XRL destination, source: XRL does a bitwise "EX-OR" operation between source and destination,
leaving the resulting value in destination. The value in source is not affected. " XRL " instruction
logically EX-OR the bits of source and destination.

XRL A,#DATA XRL A,Rn

XRL A,DIRECT XRL A,@Ri

XRL DIRECT,A XRL DIRECT, #DATA

Logical NOT

CPL complements operand, leaving the result in operand. If operand is a single bit then the state of
the bit will be reversed. If operand is the Accumulator then all the bits in the Accumulator will be
reversed.

CPL A, CPL C, CPL bit address

SWAP A — Swap the upper nibble and lower nibble of A.

Write an ASM program to move data #50h from Memory location 35h to 40h. Use minimum length
(size) coding with moderate timing. Note down both size of the code as well as timing (in machine cycle).
Solution:-

MOV 35H, #50H

MOV 36H ,#50H

MOV 37H ,#50H

MOV 38H ,#50H

MOV 39H ,#50H

MOV 3AH #50H

[10]

Minimum 2 codes
for comparison.
Each codeis 3
Marks

MOV 3BH,#50H
MOV 3CH #50H
MOV 3DH #50H
MOV 3EH ,#50H
MOV 3FH #50H
MOV 40H #50H

TOTAL:-36 BYTES, 12LINES
To calculate timing, Each instruction takes 1 machine cycle hence totally 12 machine cyclesis used.

Another solution:-

Start:
MOV A #35H (1MC)

BACK: MOV @A#50H (1 MC)
INC A (1MCQ)
CJINE A #40H, BACK (2MC)
END:

TOTAL 10BYTES, 5LINES

Here, 6 Machine cycle.

Cdculation of
Timing, size and
total lines for each
code 2 marks

Write an ASM program to add two numbers stored in Register bank 3 (R3, R4) subtract the result from
Register bank 2 (R3, R4) store the data in External memory 8000h and 8001h(higher byte and lower byte
respectively).

Solution:-

We need to add bank 3 Reg R3 + R4 =X, and subtract R3-X =[8000h] and R4-X=[8001h]

Step 1 :- Change PSW status to read Reg bank 3, collect the datain R3, R4 and saveitin A reg

Step 2:- Change PSW status to read Reg bank 2, collect the date in R2,R4 subtract with valuein A

Step 3:- store the result in External memory using movx.

[10]

Each step with code
is 3 marks
Comments 1 mark.

