

Internal Assesment Test - II

internal Assesment Test - II										
Sub: Digital Image Processing									10EC763	3
Date:	09/ 11 / 2017	Duration:	90 mins	Max Marks:	50	Sem:	7th	Branch:	ECE (B)	
Answer Any FIVE FULL Questions										
									OBE	
								Mar	ks CO R	ВТ

1. Perform histogram equalization of the 5x5 image whose data is shown in Table.1 and infer the results. Draw the histogram of image before and after equalization

[10] CO₂ L4

Gray level	0	1	2	3	4	5	6	7
Number of pixels	0	0	0	6	14	5	0	0

With necessary graphs, explain the following: (i) Contrast stretching (ii) Bit plane slicing (iii) Gray level slicing (iv) Power law transformation

CO₂ [10] L4

Briefly discuss (i) RGB color model (ii) CMYK color model 3.(a)

CO₆ L2 [06]

Write a note on full color image processing.

[04] CO₆ L2

4. Explain the smoothing of images in frequency domain using: (i) ideal low pass filter (ii) Butterworth low pass filter

[10] CO4 L3

CMR INSTITUTE OF **TECHNOLOGY**

2.

Internal Assesment Test - II

Sub: Digital Image Processing									10EC763		
Date:	09/ 11 / 2017	Duration:	90 mins	Max Marks:	50	50 Sem: 7th Branch: ECE (B					
Answer Any FIVE FULL Questions											
									OBE		
								Marl	CO RBT		

1. Perform histogram equalization of the 5x5 image whose data is shown in Table.1 and infer the results. Draw the histogram of image before and after equalization

[10] CO₂ L4

Gray level	0	1	2	3	4	5	6	7
Number of pixels	0	0	0	6	14	5	0	0

2. With necessary graphs, explain the following: (i) Contrast stretching (ii) Bit [10] CO₂ L4 plane slicing (iii) Gray level slicing (iv) Power law transformation

CO₆ 3.(a) Briefly discuss (i) RGB color model (ii) CMYK color model [06] L2

Write a note on full color image processing.

[04] CO₆ L2 CO4 [10] L3

4. Explain the smoothing of images in frequency domain using: (i) ideal low pass filter (ii) Butterworth low pass filter

5.	What is pseudo color image processing? Explain intensity slicing and gray to color transformations.	[10]	CO6	L2				
6. (a)	Justify the statement "median filter is an effective tool to minimize salt and	[05]	CO4	L5				
	pepper noise" using the image segment shown below:							
	$ \begin{bmatrix} 24 & 22 & 33 & 25 & 32 & 24 \\ 34 & 255 & 24 & 0 & 26 & 23 \\ 23 & 21 & 32 & 31 & 28 & 26 \end{bmatrix} $							
(b)	(b) Using the second derivative, develop a Laplacian mask for image sharpening							
7. (a)	7. (a) What is a histogram? Describe how does histogram of the following image look like:							
	(i) Dark image (ii) Bright image							
	(iii) Low contrast image (iv) High contrast image							
(b)	Explain the following spatial image enhancement operations:	[04]	CO2	L2				
	(i) Image negative (ii) AND operation							
8.	What is HSI color model? Give the expressions for converting RGB to HIS color model.	[10]	CO6	L2				

5.	What is pseudo color image processing? Explain intensity slicing and gray to color transformations.	[10]	CO6	L2					
6. (a)	Justify the statement "median filter is an effective tool to minimize salt and	[05]	CO4	L5					
	pepper noise" using the image segment shown below:								
	$ \begin{bmatrix} 24 & 22 & 33 & 25 & 32 & 24 \\ 34 & 255 & 24 & 0 & 26 & 23 \\ 23 & 21 & 32 & 31 & 28 & 26 \end{bmatrix} $								
(b)	[05]	CO4	L4						
7. (a)	What is a histogram? Describe how does histogram of the following image look	[06]	CO2	L2,L4					
	like:								
	(i) Dark image (ii) Bright image								
	(iii) Low contrast image (iv) High contrast image								
(b)	Explain the following spatial image enhancement operations:	[04]	CO2	L2					
	(i) Image negative (ii) AND operation								
8.	What is HSI color model? Give the expressions for converting RGB to HIS color	[10]	CO6	L2					
	model.								

Solution Scheme (70)

(b) $V_{=}\{2,3,4\}$ $\frac{4-path}{3}$ $\frac{4}{1}$ $\frac{2}{1}$ $\frac{4}{2}$ $\frac{4}{9}$ $\frac{4}{3}$ $\frac{4}{1}$ $\frac{2}{1}$ $\frac{4}{2}$ $\frac{4}{9}$ $\frac{4}{3}$ $\frac{4}{1}$ $\frac{2}{1}$ $\frac{4}{1}$ $\frac{4}{1}$

m-path:

shortel-on-path length = 5

2. Concept of spatial of Horing Ceraplanation)
(fig-mechanics of spatial
filtering -3x3 mack): 2m

Rapressione of R. gray): Im

Smoothing of Hem

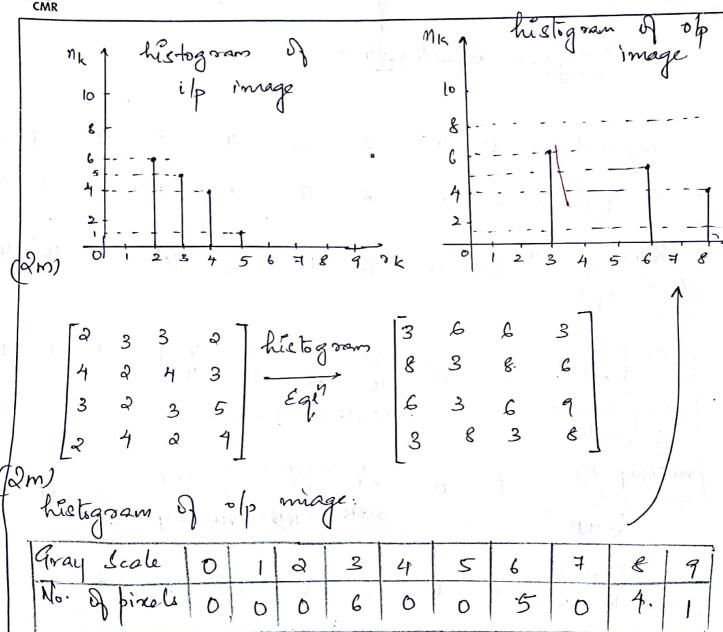
Need / puepose: (IM)

Std ang & weighted any mank & explanation: (2m) Expression: (3m)

Order étatieties (median) filles:

purpose: (Im.)

example with mask: (2m):



3, Hickogram	Rqualization
--------------	--------------

	6		2	3	4	5	6	7	8	9
no. a bixe li	0	0	6	5	4	1	O	0	0	
Russing Rum (. Ž mj). j=0	0	D	6	11	15	16	16	16	16	16
S= Enj/n. (+ by total no. a) pixele)	0	0		16	15 16 0·9375	16 = 1	Ţ	T.	1	1
multiply by man. intensity (=9)	0	0			0-9375 ×9 =8-4375		9	9	9	9
Round up li nearest integer	. 0	0	3	6	8	9	9	9	9	9

Mapping	gray	level	lõ	î /p	gray	Icale:	(Jm	. ,
Original	image	after	equa	rliza	tion		. 7	
0	d l	0					1	
		0		da				
2		3						
3 4.		-6						
6		- 9 - 9					(m)	
R &	cast town and	9						

1, (i) RGB color model.

RGB cube tique: 2m

Explanation: dm

Safe RBG colors: Im

(11)-HSI color model:

HSI model cube (rotated Rab): 2m Projection tig. & explanation: Im Emplanation of computing HIS, I components: 2m 5) Plendo obler image processing > Explanation: 2m Irolen City elicing: Graphs(2) { 3m Couplanation - Im Gray to color transformation: graph + applies emplanation: (2+1) m 6, (i) Contrast elect ching goaph: (1.5m) emplanation of variations in 71,82, l1, la: (1 m) (ii) Bit plane slicing gra fig: Im explanation: 1.5 m (ui) Gray level elicing: graphe (2 voeietiene) = 1:5 m taplanation: Im (iv) Power law transformation: graph, expression: 1.5 m

Scanned by CamScanner

explanation with example: 1m

7. (a) tilsteg nam de finition

Plot fox: + emprossion: 2m

Dask image - Im

Bright ' - Im

low contrast " - Im

high contrast" - Im

(b) Image Negative graph + empression: Im emplanation: — Im

AND operation

explanation with expenante fig: (It)m