| USN | | | | | | |-----|--|--|--|--|--| ## $Internal\ Assessment\ Test\ II-Nov.\ 2017$ | Sub: | ENGINEERING ELECTROMAGNETICS Sub Code: 15EC36 | Branch: | ECE | | | |-------|--|------------|-------|-----|-----| | Date: | | A, B,C)/TC | ĊE | OF | BE | | | Answer any FIVE FULL Questions | MA | MARKS | | RBT | | 1 (a) | Derive point form of Ampere's circuital law. | [1 | [0] | CO1 | L3 | | | CURL OF A VECTOR & STOKES THEOREM: | | | | | | | | | | | | | | Curl of H. It is an axial (rootational) vector whose magnitude is the maximum eirculation of H por unit area as the area tends to zero the maximum eirculation of H por unit area as the area cohen the | | | | | | | It is an axial (notational) vector while area tends to zero | | | | | | | the maximum circulation of the por unit area as | | | | | | | and whose direction is the normal direction of | | | | | | | area is oriented as to make the circulation maximum. | max) | | | | | | | A-7. | | | | | | | de percentation of \vec{H} . $\vec{H} = \int_{-1}^{1} dt + \int_{-1}^{1} dt$ $\vec{H} \cdot dt = \int_{-1}^{1} dt + \int_{-1}^{1} dt$ $\vec{H} \cdot dt = \int_{-1}^{1} dt + \int_{-1}^{1} dt$ | | | | | | | January Grand = January Hall = January Hall | | | | | | | die p(co, yore) | | | | | | | | | | | | | | By using Taylor service expansion of Hy about P, $ \int_{A}^{A} \frac{d}{dt} = \left[H_{y} \left(\alpha_{0}, y_{0}, z_{0} \right) - \frac{dz}{2} \frac{\partial}{\partial z} H_{y} \right] dy + higher order term $ ab | | | | | | | dy by using about po | | | | | | | It I = [H. (9. 4. 2) - dz 2 Hy] dy + higher order term | | | | | | | ab [19 (10/Je), 2 82 p] | | | | | | | | | | | | | | 11 (x, y, z) + (x-xe) 2Hy | | | | | | | Three dimensional $H_{y}(x_{0},y_{0},z_{0}) + (x-x_{0}) \frac{\partial H_{y}}{\partial x}\Big _{p}$ | | | | | | | Three dimensional + 9-60 og p | | | | | | Ì | Bylor sories + (2-20) 2Hy | | | | | | | expansion - thinker order forms | | | | | [06] CO1 L3 | | selv_ | | | | |-------|---|------|-----|----| | | $\overrightarrow{\nabla} \times \overrightarrow{H} = \begin{vmatrix} \widehat{a}_{1} & \widehat{a}_{2} & \widehat{a}_{3} \\ \widehat{b}_{1} & \widehat{b}_{3} & \widehat{b}_{4} \\ \widehat{b}_{1} & \widehat{b}_{3} & \widehat{b}_{4} \end{vmatrix} = 2(\alpha + \alpha_{3}) \hat{a}_{1} + \frac{1}{2}\hat{a}_{1} \hat{a}_{2}$ | | | | | | : .] = = = 2(xt2) a, + = a2. | | | | | | OF = (7. di = (2/4+20) 2/4 + 1/2 22). dxdy 2/2 | | | | | | $= \frac{1}{2^2} \int_{A \times A_3}^{A \times A_3} = \left[10^{-1}, \left[2 - 1 \right] \left[5 - 3 \right] = \frac{1}{8}A$ $= \frac{1}{2^2} \int_{A \times A_3}^{A \times A_3} = \left[10^{-1}, \left[2 - 1 \right] \left[5 - 3 \right] = \frac{1}{8}A$ | | | | | 3 (a) | State and explain Stoke's theorem. | [06] | CO2 | L3 | | | From the definition of curl, $ \begin{array}{cccccccccccccccccccccccccccccccccc$ | | | | | | $ \begin{array}{cccc} & = & \int \lim_{K} \int \frac{dx}{dx} & d$ | | | | | (b) | At a point P(x,y,z) the components of vector magnetic potential are given as $A_x = 4x + 3y + 2z$, $A_y = 5x + 6y + 3z$, $A_z = 2x + 3y + 5z$. Determine B at point P. | [04] | CO2 | L3 | | | $\vec{B} = \vec{\nabla} \times \vec{A} = \begin{vmatrix} \vec{a}_1 & \vec{a}_2 \\ \vec{b}_2 & \vec{b}_3 \\ \vec{b}_4 & \vec{b}_4 \end{vmatrix} \begin{pmatrix} \vec{a}_1 + \vec{b}_4 \\ \vec{b}_1 + \vec{b}_2 \end{pmatrix} \begin{pmatrix} \vec{b}_1 + \vec{b}_4 \\ \vec{b}_1 + \vec{b}_2 \end{pmatrix} \begin{pmatrix} \vec{b}_1 + \vec{b}_4 \\ \vec{b}_1 + \vec{b}_2 \end{pmatrix} \begin{pmatrix} \vec{b}_1 + \vec{b}_2 \\ \vec{b}_1 + \vec{b}_2 \end{pmatrix} \begin{pmatrix} \vec{b}_1 + \vec{b}_2 \\ \vec{b}_1 + \vec{b}_2 \end{pmatrix} \begin{pmatrix} \vec{b}_1 + \vec{b}_2 \\ \vec{b}_1 + \vec{b}_2 \end{pmatrix} \begin{pmatrix} \vec{b}_1 + \vec{b}_2 \\ \vec{b}_1 + \vec{b}_2 \end{pmatrix} \begin{pmatrix} \vec{b}_1 + \vec{b}_2 \\ \vec{b}_2 + \vec{b}_3 \end{pmatrix} \begin{pmatrix} \vec{b}_1 + \vec{b}_2 \\ \vec{b}_1 + \vec{b}_2 \end{pmatrix} \begin{pmatrix} \vec{b}_1 + \vec{b}_2 \\ \vec{b}_2 + \vec{b}_3 \end{pmatrix} \begin{pmatrix} \vec{b}_1 + \vec{b}_2 \\ \vec{b}_2 + \vec{b}_3 \end{pmatrix} \begin{pmatrix} \vec{b}_1 + \vec{b}_2 \\ \vec{b}_2 + \vec{b}_3 \end{pmatrix} \begin{pmatrix} \vec{b}_1 + \vec{b}_2 \\ \vec{b}_2 + \vec{b}_3 \end{pmatrix} \begin{pmatrix} \vec{b}_1 + \vec{b}_2 \\ \vec{b}_2 + \vec{b}_3 \end{pmatrix} \begin{pmatrix} \vec{b}_1 + \vec{b}_2 \\ \vec{b}_3 + \vec{b}_3 \end{pmatrix} \begin{pmatrix} \vec{b}_1 + \vec{b}_2 \\ \vec{b}_3 + \vec{b}_3 \end{pmatrix} \begin{pmatrix} \vec{b}_1 + \vec{b}_2 \\ \vec{b}_3 + \vec{b}_3 \end{pmatrix} \begin{pmatrix} \vec{b}_1 + \vec{b}_2 \\ \vec{b}_3 + \vec{b}_3 \end{pmatrix} \begin{pmatrix} \vec{b}_1 + \vec{b}_2 \\ \vec{b}_3 + \vec{b}_3 \end{pmatrix} \begin{pmatrix} \vec{b}_1 + \vec{b}_2 \\ \vec{b}_3 + \vec{b}_3 \end{pmatrix} \begin{pmatrix} \vec{b}_1 + \vec{b}_2 \\ \vec{b}_3 + \vec{b}_3 \end{pmatrix} \begin{pmatrix} \vec{b}_1 + \vec{b}_2 \\ \vec{b}_3 + \vec{b}_3 \end{pmatrix} \begin{pmatrix} \vec{b}_1 + \vec{b}_2 \\ \vec{b}_3 + \vec{b}_3 \end{pmatrix} \begin{pmatrix} \vec{b}_1 + \vec{b}_2 \\ \vec{b}_3 + \vec{b}_3 \end{pmatrix} \begin{pmatrix} \vec{b}_1 + \vec{b}_2 \\ \vec{b}_3 + \vec{b}_3 \end{pmatrix} \begin{pmatrix} \vec{b}_1 + \vec{b}_2 \\ \vec{b}_3 + \vec{b}_3 \end{pmatrix} \begin{pmatrix} \vec{b}_1 + \vec{b}_2 \\ \vec{b}_3 + \vec{b}_3 \end{pmatrix} \begin{pmatrix} \vec{b}_1 + \vec{b}_2 \\ \vec{b}_3 + \vec{b}_3 \end{pmatrix} \begin{pmatrix} \vec{b}_1 + \vec{b}_2 \\ \vec{b}_3 + \vec{b}_3 \end{pmatrix} \begin{pmatrix} \vec{b}_1 + \vec{b}_2 \\ \vec{b}_3 + \vec{b}_3 \end{pmatrix} \begin{pmatrix} \vec{b}_1 + \vec{b}_2 \\ \vec{b}_3 + \vec{b}_3 \end{pmatrix} \begin{pmatrix} \vec{b}_1 + \vec{b}_2 \\ \vec{b}_3 + \vec{b}_3 \end{pmatrix} \begin{pmatrix} \vec{b}_1 + \vec{b}_2 \\ \vec{b}_3 + \vec{b}_3 \end{pmatrix} \begin{pmatrix} \vec{b}_1 + \vec{b}_3 + \vec{b}_3 \\ \vec{b}_3 + \vec{b}_3 \end{pmatrix} \begin{pmatrix} \vec{b}_1 + \vec{b}_2 \\ \vec{b}_3 + \vec{b}_3 \end{pmatrix} \begin{pmatrix} \vec{b}_1 + \vec{b}_3 + \vec{b}_3 \\ \vec{b}_3 + \vec{b}_3 \end{pmatrix} \begin{pmatrix} \vec{b}_1 + \vec{b}_3 + \vec{b}_3 \\ \vec{b}_3 + \vec{b}_3 \end{pmatrix} \begin{pmatrix} \vec{b}_1 + \vec{b}_3 + \vec{b}_3 \\ \vec{b}_3 + \vec{b}_3 \end{pmatrix} \begin{pmatrix} \vec{b}_1 + \vec{b}_3 + \vec{b}_3 \\ \vec{b}_3 + \vec{b}_3 \end{pmatrix} \begin{pmatrix} \vec{b}_1 + \vec{b}_3 + \vec{b}_3 \\ \vec{b}_3 + \vec{b}_3 \end{pmatrix} \begin{pmatrix} \vec{b}_1 + \vec{b}_3 + \vec{b}_3 \\ \vec{b}_3 + \vec{b}_3 \end{pmatrix} \begin{pmatrix} \vec{b}_1 + \vec{b}_3 + \vec{b}_3 \\ \vec{b}_3 + \vec{b}_3 \end{pmatrix} \begin{pmatrix} \vec{b}_1 + \vec{b}_3 + \vec{b}_3 \\ \vec{b}_3 + \vec{b}_3 \end{pmatrix} \begin{pmatrix} \vec{b}_1 + \vec{b}_3 + \vec{b}_3 \\ \vec{b}_3 + \vec{b}_3 \end{pmatrix} \begin{pmatrix} \vec{b}_1 + \vec{b}_3 + \vec{b}_3 \\ \vec{b}_3 + \vec{b}_3 \end{pmatrix} \begin{pmatrix} \vec{b}_1 + \vec{b}_3 + \vec{b}_3 \\ \vec{b}_3 + \vec{b}_3 \end{pmatrix} \begin{pmatrix} \vec{b}_1 + \vec{b}_3 + \vec{b}_3 \\ \vec{b}_3 + \vec{b}_3 \end{pmatrix} \begin{pmatrix} \vec{b}_1 + \vec{b}_3 + \vec{b}_3 \\ \vec{b}_3 + \vec{b}_3 \end{pmatrix} \begin{pmatrix} \vec{b}_1 + \vec{b}_3$ | | | | |---|---|------|-----|---| | 4 | OR | [10] | CO2 | H | | 4 | Evaluate both sides of Stoke's theorem for the field $\mathbf{H} = 6xy a_x - 3y^2 a_y$ A/m and the rectangular path region, $-2 \le x \le 5$, $-1 \le y \le 1$, $z = 0$. Let the positive direction of \mathbf{ds} be \mathbf{a}_z . | [10] | CO2 | | L3 $$\vec{H} \cdot d\vec{l} = (6x_3 \hat{a}_{\lambda} - 3y^2 \hat{a}_{y}) \cdot (dx \hat{a}_{\lambda} + dy \hat{a}_{y} + dz \hat{a}_{y})$$ $$= (6x_3 dx - 3y^2 dy)$$ $$Along path (3), (5,1)$$ $$= \int (6x_3 \hat{a}_{\lambda} - 3y^2 \hat{a}_{y}) \cdot dy \hat{a}_{y}$$ $$= -3 \int y^2 dy = -3 \cdot \left[y^2 \right] \int y$$ | | Along poth G $ \int \vec{H} \cdot \vec{M} = \int 6\pi y dx = 6 \cdot (-1) \left[\frac{\chi^2}{2} \right]^5 $ $ = -6 \cdot \left[25 - 4 \right] = -63. $ $ \vec{A} \cdot \vec{H} = \begin{vmatrix} \hat{a}_{1} & \hat{a}_{2} & \hat{a}_{3} \\ \hat{a}_{3} & \hat{d}_{3} \end{vmatrix} = -2 - 63 + 2 - 63 = -126. $ $ \vec{A} \cdot \vec{H} = \begin{vmatrix} \hat{a}_{1} & \hat{a}_{2} & \hat{a}_{3} \\ \hat{a}_{3} & \hat{d}_{3} \end{vmatrix} = -6 \cdot 2 \cdot \frac{1}{2} \frac{1}$ | | | | |-------|--|------|-----|----| | 5 (a) | Derive the expression for force on a current element placed in a steady magnetic field. | [06] | CO1 | L3 | | | consider the case of current carrying conductors or convention current density, | | | | | | J= Pv 3 | | | | | | da = fodu. The = fodu TX R The Fodu TX R The TX R The TX R The TX R THE TY FERE | | | | | | IF = D K X B ds | | | | | | Thenroling, | | | | | | F= J 7 x 8 du | | | | | | $\vec{F} = \oint \vec{z} d\vec{z} \times \vec{\theta} = -\vec{z} \oint \vec{\delta} \times d\vec{z}$ | | | | | | $\vec{F} = \oint \vec{L} \vec{d} \cdot \vec{x} \cdot \vec{\theta} = -\vec{L} \oint \vec{\theta} \cdot \vec{x} \cdot \vec{d} \cdot \vec{x}$
For a straigh conductor in a uniform mag.
$\hat{f} = \vec{L} \cdot \vec{x} \cdot \vec{\theta}$ $\hat{a}_{x} \cdot \hat{a}_{y} \cdot \hat{a}_{z}$ | | | | | (b) | Calculate M for the material in which: (a) μ_r =1.4 and H = 350 a_x A/m. (b) μ_r = 6 and there are 2.5 x 10 29 atoms/m ³ , each having magnetic dipole moment of 2.8 \times 10 $^{-30}$ a_x A.m ² . | [04] | CO1 | L3 | | | soln (a) criver MA = 1-4, H = 350 ax A/m. | | | | |-------|---|------|-----|----| | | $(6) \text{ Here } \Lambda_R = 6, \ n = 2.5 \times 10^{29} \text{ atms/m}^3$ $M = n \text{ m} = 2.5 \times 10^{29} \text{ atms/m}^3$ $M = n \text{ m} = 2.5 \times 10^{29} \times 2.8 \times 10^{-30} \text{ atm}$ | | | | | | | | | | | 6 (a) | Write the equations to compare electric circuit and magnetic circuit with respect to i) e.m.f and m.m.f, ii) Electric and magnetic scalar potential, iii) Electric current and magnetic flux, iv) Resistance and reluctance, v) $\oint E \cdot dl$ and $\oint H \cdot dl$ | [05] | CO1 | L3 | | | $\vec{F} = -\vec{\nabla}V \qquad \qquad \vec{\mu} = -\vec{\nabla}Vm$ $V_{a,b} = -\int_{a}^{b} \vec{F} \cdot d\vec{L} \qquad \qquad V_{m,a,b} = \int_{a}^{b} \vec{\mu} \cdot d\vec{L}$ | | | | | | ヺ・ヹ゚ , ヺ・ゎヹ゚
ヹ゠゠゚゚゚゚゚ゔ゠ヹ゚
゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚ | | | | | | Resistance $V = IR$ Concluctance $V_{m} = \oint R$ Concluctance | | | | | | Geneticians $G = \frac{1}{R}$ $P = \frac{1}{R}$ $P = \frac{1}{R}$ | | | | | | $ \oint \vec{E} \cdot d\vec{L} = 0 $ For N turns coil, $ \oint \vec{H} \cdot d\vec{L} = \nabla \vec{L} \cdot \vec{L} = 0 $ | | | | | | Hagnato matire force | | | | | | $m \cdot m \cdot q \cdot = \mathcal{F} = \varphi_m \mathcal{F}$ | | | | | (b) | Two differential current elements are present as follows: $I_1 dl_1 = -3a_y$ A.m at $P_1(5,2,1)$ and $I_2 dl_2 = -4a_z$ A.m at $P_2(1,8,5)$. Determine differential force on element 2 due to element 1. | [05] | CO1 | L3 | | | | | | | | 1) two differential current elements are the | | |---|------| | present as follows: present as follows: I di = -3 as A.m at P. (5,2,1) and I di = -4 az A.m at P. (1,8,5) Determine I diz = -4 az A.m at p. (1,8,5) Determine I diz = -4 az A.m at p. (1,8,5). | | | I, di, = -3 mg A.m I p (1, 8,5) Determine | | | Talls = -4 az A.m at the alenest 1. different force on alenest 2 due to alenest 1. | | | dillerant force on | | | (3,x,1) M2 + - | | | $\frac{501}{R_{12}} = (1-5)\hat{a_1} + (8-2)\hat{a_2} + (5-1)\hat{a_2} P_1$ | | | = -42x +62g + 42e | | | is Differential force on element 2 due to element | | | d df2) = 12 d12 1 - 2 | | | = Iz die x Mo I, (dL1 x aria) | | | TI IT V (di xâu.) | | | = Mo III2 de x (de xâx12) | | | 7 (- (a') x (-3 a) x (-4 ax +0 3) | | | = 41 x10 (42+62 + 42) 3/2 | | | = 8.56 mg nN. | | | = 8.30 % | | | | | | | | | (a) Obtain the boundary conditions at the interface between two magnetic materials. | [06] | 06] CO1 L3 | | _ | | | |---|------|-----|----| | North comp. of R in continuous by gation (M). HN2 HN2 - V. (M) HN1 | | | | | I conte of B in continuous by | | | | | North of H is discon | | | | | autro (M). | | | | | - ~ (MI HNI) | | | | | gatio (m). MN2 = 2m2 (m) HNI = 2m2 hI MN MN [M= 2mH] | | | | | X Az | | | | | $\int \vec{x} d\vec{x} = I$ | | | | | mapline reval to | | | | | snall closed both in a plane normal to
the boundary surface. | | | | | the boundary surface. = KOL. | | | | | | | | | | to the plane of | | | | | -: Ht - Ht2 | | | | | → (A= H=) X an = R | | | | | ans a wit remail at the boundary | | | | | directed from logion 1 to logion 2 | | | | | (Hi - Hite) = aniex R | | | | | $\frac{8 + }{2} = \kappa$ | | | | | [Mt2 - xn2 Mt1 - xn2 K] | | | | | [Mt2 Xn1 | | | | | $H_{\frac{1}{2}} - H_{\frac{1}{2}} = R$ | | | | | $\Rightarrow \frac{m_{11}}{2m_{1}} - \frac{m_{12}}{2m_{2}} = R$ | | | | | => ML1 xn2 - ML2 xn1 = & xm1 xng | | | | | => M+ x= = -6 2 2 | | | | | > M1 - N - N - N - N - N - N - N - N - N - | | | | | $\Rightarrow M_{k_2} \gamma_{m_1} = -k \gamma_{n_1} \gamma_{m_2} + M_{k_1} \gamma_{m_2}$ $\Rightarrow M_{k_2} = \frac{\gamma_{n_2}}{\gamma_{m_1}} M_{k_1} - k \gamma_{m_2}$ | | | | | (b) An air core toroid has 500 turns, mean radius of 15 cm, cross-sectional area of 6 cm ² . The | [04] | CO1 | L3 | | magneto motive force is 2000 A.t. Calculate total reluctance, flux, flux-density, field intensity inside the core. | | | | | minute in the total | _ | | I | Stationary path. magnetic flux \rightarrow time varying quantity. i.em = $\oint \vec{E} \cdot d\vec{L} = -\int \frac{\partial \vec{B}}{\partial t} \cdot d\vec{s}$ Applying Stations theorem $(\vec{\nabla} \times \vec{E}) \cdot d\vec{s} = -\int \frac{\partial \vec{B}}{\partial t} \cdot d\vec{s}$ Surface integrals taken over identical general surfaces. $(\vec{\nabla} \times \vec{E}) \cdot d\vec{s} = -\frac{\partial \vec{B}}{\partial t} \cdot d\vec{s}$ $(\vec{\nabla} \times \vec{E}) \cdot d\vec{s} = -\frac{\partial \vec{B}}{\partial t} \cdot d\vec{s}$ $(\vec{\nabla} \times \vec{E}) = -\frac{\partial \vec{B}}{\partial t} \cdot d\vec{s}$ $(\vec{\nabla} \times \vec{E}) = -\frac{\partial \vec{B}}{\partial t} \cdot d\vec{s}$ of $\vec{E} \cdot d\vec{l} = -\int \frac{\partial \vec{B}}{\partial t} \cdot d\vec{s}$ surfaces. $(\vec{E} \cdot d\vec{l}) = -\int \frac{\partial \vec{B}}{\partial t} \cdot d\vec{s}$ $(\vec{E} \cdot d\vec{l}) = -\int \frac{\partial \vec{B}}{\partial t} \cdot d\vec{s}$ of $\vec{E} \cdot d\vec{l} = -\int \frac{\partial \vec{B}}{\partial t} \cdot d\vec{s}$ of $\vec{E} \cdot d\vec{l} = -\int \frac{\partial \vec{B}}{\partial t} \cdot d\vec{s}$ of $\vec{E} \cdot d\vec{l} = 0$ $(\vec{E} \cdot d\vec{l}) = 0$ | (b) | Let $\mu = 10^{-5}$ H/m, $\epsilon = 4 \times 10^{-9}$ F/m, $\sigma = 0$ and $\rho_v = 0$. Find K so that the following pair of fields satisfy Maxwell's equations: $\mathbf{E} = (20y - Kt)\mathbf{a}_x$ V/m & $\mathbf{H} = (y + 2 \times 10^6 t)\mathbf{a}_z$ A/m. | [04] | CO4 | L3 | |-----|---|------|-----|----| | | AXH_= 2+ 94. 2=0.(-:0=0) | | | | | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | $\nabla x H' = J' + \frac{\partial J}{\partial t}.$ $\nabla x H' = | | | | | 9 | Let $\mu = 3 \times 10^{-5}$ H/m, $\epsilon = 1.2 \times 10^{-10}$ F/m and $\sigma = 0$ everywhere. If | [10] | CO4 | L3 | | | Here $\mu = 3 \times 10^{-4}$ H/m, $\epsilon = 1.2 \times 10^{-4}$ F/m and $\theta = 0$ everywhere. If $H = 2 \cos(10^{10}t - \beta x)a_z$ A/m, use Maxwell's equations to obtain the expressions for B, D, E and β . | [10] | | LJ | | ,1 | 1=3x10-5H/m } ==0 H=2cos(1012 - Fy)az | |-----|--| | 6 | inhable B, D, E and B. | | | = MH = 6 X10 5 cas (100 t - Bx) 02 | | - | $\vec{H} = \frac{\partial \vec{D}}{\partial t}$ | | 575 | | | | $X\hat{H} = \begin{vmatrix} \hat{a}_1 & \hat{a}_3 & \hat{a}_2 \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 0 & 0 & 2 \cos(10^{10} t - \beta t) \end{vmatrix}$ | | | | | | ay = [201(10"+- BA)] | | | y2 (- sm (1010 + - BA) (-B) | | ٠ . | $2\sin\left(10^{10}t-\beta\lambda\right)\beta\hat{a}y$ | | · e | $\vec{D} = -2\beta \left(\sin \left(10^{10} t - \beta A \right) \vec{a} \right) dt$ | | | $= \frac{+2\beta \cos \left(10^{10} + -\beta \lambda\right)}{10^{10}} \hat{\lambda}_{0}$ | | | 2 B cos (10° t - Bx) Day c/m | What is the inconsistency of Ampere's law with the equation of continuity? Derive modified form of Ampere's law. From Amperers wix aided law, $$(\vec{\nabla} \times \vec{H}) = \vec{J} - \vec{O}$$ $\vec{\nabla} \cdot (\vec{\nabla} \times \vec{H}) = \vec{O} = \vec{\nabla} \cdot \vec{T}$ if deatherly . But from ann. of continuity . $\vec{P} \cdot \vec{J} = -\frac{\partial P_u}{\partial k}$ For time surging field we add an unknown term \vec{G} to ann. \vec{O} . $\vec{\nabla} \times \vec{H} = \vec{J} + \vec{G}$ $\vec{\nabla} \cdot \vec{G} $\vec{G} = \vec{J} + \vec{G}$ [07] CO4 L3 | i. Ambara | | | | |---|---|-----|----| | in Amperers circuital law in points form, $(\vec{\nabla} \times \vec{H}) = (\vec{J} + \frac{\partial D}{\partial t})$ | | | | | (b) List Maxwell's equations in point and integral forms for time varying field. |] | CO4 | L1 | | (b) List Maxwell's equations in point and integral forms for time varying field. Maxwell's equations in point form; $\overrightarrow{\nabla}, \overrightarrow{B} = P_{0}$ $\overrightarrow{\nabla}, \overrightarrow{B} = 0$ $\overrightarrow{\nabla} \times \overrightarrow{E} = -\partial \overrightarrow{B}$ $\overrightarrow{\nabla} \times \overrightarrow{H} = \overrightarrow{J} + \partial \overrightarrow{B}$ Maxwell's equations in Falegral form; $\overrightarrow{D}, \overrightarrow{D} = P_{0}$ $\overrightarrow{\nabla} \times \overrightarrow{H} = \overrightarrow{J} + \partial \overrightarrow{B}$ Maxwell's equations in point and integral form; $\overrightarrow{\nabla}, \overrightarrow{D} = P_{0}$ $\overrightarrow{\nabla} \times \overrightarrow{E} = -\partial \overrightarrow{B}$ $\overrightarrow{\nabla} \times \overrightarrow{H} = \overrightarrow{J} + \partial \overrightarrow{B}$ Maxwell's equations in point and integral form; $\overrightarrow{\nabla}, \overrightarrow{D} = P_{0}$ $\overrightarrow{\nabla}, \overrightarrow{B} = 0$ $\overrightarrow{\nabla} \times \overrightarrow{E} = -\partial \overrightarrow{B}$ $\overrightarrow{\nabla} \times \overrightarrow{H} = \overrightarrow{J} + \partial \overrightarrow{H}$ $ | | CO4 | L1 |