

INTERNAL ASSESSMENT TEST – II

Sub:	DIGITAL SIGNAL PROC	ESSING						Code:	15EC52
Date:	07 / 11 / 2017	Duration:	90 mins	Max Marks:	50	Sem:	V	Branch:	ECE(D),TCE(B)

Answer any 5 full questions

- 1. Derive the Radix-2 DIT-FFT algorithm to compute the DFT of an 8-point sequence. Draw the complete signal flow graph.
- 2. Compute the DFT of x[n] = [0,1,2,3,4,5,6,7] using DIF-FFT.
- 3. Compute the IDFT of X[k] = [36, 1 2.4142j, -8 + 8j, 1 0.4142j, -8, 1 + 0.4142j, -8 8j, 1 + 2.4142j] using DIF-IFFT.
- Compute the circular convolution of x[n] = [2,4,6,8] and h[n] = [1,3,5,7] using DIT-FFT algorithm.

Marks	СО	RBT
[10]	CO502.2	L2

TICAL					
CDI					

INTERNAL ASSESSMENT TEST – II

S	Sub:	DIGITAL SIGNAL PROCESSING					Code:	15EC52		
D	ate:	07 / 11 / 2017	Duration:	90 mins	Max Marks:	50	Sem:	V	Branch:	ECE(D),TCE(B)

Answer any 5 full questions

- 1. Derive the Radix-2 DIT-FFT algorithm to compute the DFT of an 8-point sequence. Draw the complete signal flow graph.
- 2. Compute the DFT of x[n] = [0,1,2,3,4,5,6,7] using DIF-FFT.
- 3. Compute the IDFT of X[k] = [36, 1 2.4142j, -8 + 8j, 1 0.4142j, -8, 1 + 0.4142j, -8 8j, 1 + 2.4142j] using DIF-IFFT.
- Compute the circular convolution of x[n] = [2,4,6,8] and h[n] = [1,3,5,7] using DIT-FFT algorithm.

Marks	СО	RBT		
F4.03	G0 502 2	1.0		
[10]	CO502.2	L2		
[10]	CO502.2	L2		
[10]	CO502.2	L2		
[10]	CO502.2	L2		

5	Explain Goertzel algorithm using difference equation. Obtain the direct form-II
	realization of the system which computes DFT using Goertzel algorithm.

- 6 Derive an expression for the frequency response of the filters having
 - a) symmetric and odd length impulse response
 - b) antisymmetric and even length impulse response
- 7 The desired response of a filter is

$$H_d\left(e^{j\omega}\right) = \begin{cases} e^{-j3\omega}, & -\frac{3\pi}{4} \le \omega \le \frac{3\pi}{4} \\ 0, & \frac{3\pi}{4} < |\omega| \le \pi \end{cases}$$

Determine the impulse response using Hamming window.

With necessary mathematical analysis derive the frequency sampling structure of FIR filter.

co	RBT
CO502.2	L2
CO502.3	L3
2232	
CO502.3	L3
CO502.3	L2
	CO502.2 CO502.3

5	Explain Goertzel algorithm using difference equation. Obtain the direct form-II
	realization of the system which computes DFT using Goertzel algorithm.

- 6 Derive an expression for the frequency response of the filters having
 - a) symmetric and odd length impulse response
 - b) antisymmetric and even length impulse response
- 7 The desired response of a filter is

$$H_d\left(e^{j\omega}\right) = \begin{cases} e^{-j3\omega}, & -\frac{3\pi}{4} \le \omega \le \frac{3\pi}{4} \\ 0, & \frac{3\pi}{4} < |\omega| \le \pi \end{cases}$$

Determine the impulse response using Hamming window.

8 With necessary mathematical analysis derive the frequency sampling structure of FIR filter.

	Marks	CO	RBT
Ι	[10]	CO502.2	L2
	[10]	CO502.3	L3
	[10]	C0302.3	Lo
	[10]	CO502.3	L3
e	[10]	CO502.3	L2

Solutions

$$X(K) = X_1(K) + W_N X_2(K)$$

$$0 \le K \le \frac{N}{2} - 1$$

$$0 \le K \le \frac{N}{2} - 1$$

$$0 \le |C \le \frac{N}{2} - 1$$

$$X(K + \frac{N}{2}) = X_1(K) - W_N \times_2(K)$$

signal Flow Graph

5

DF-II realization.

$$H(2) = Z \left[\begin{pmatrix} 2 \end{pmatrix} & h = 0 \\ h(\omega) = -j\omega \begin{pmatrix} N-1 \\ 2 \end{pmatrix} + 2 = h(n) \cos \left(\omega \begin{pmatrix} N-1-2n \\ 2 \end{pmatrix} \right) \right]$$

$$H(\omega) = e^{-j\omega \begin{pmatrix} N-1 \\ 2 \end{pmatrix}} + 2 = h(n) \cos \left(\omega \begin{pmatrix} N-1-2n \\ 2 \end{pmatrix} \right)$$

$$N - \text{even} \quad -\frac{N-1}{2} \quad \frac{N-1}{2} - n \quad -\frac{N-1}{2} - n \quad \frac{N-1}{2} - n \quad$$

$$H(\omega) = e^{-j\omega(\frac{N-1}{2})} \int_{n=0}^{\frac{N-1}{2}} h(n) 2j \sin(\omega(\frac{N-1-2n}{2}))$$

$$h(n) = \begin{cases} \frac{\sin(\frac{3\pi}{4}(n-3))}{\pi(n-3)}, & n \neq 3 \\ \frac{3}{4}, & n = 3 \end{cases}$$

$$w(n) = 0.54 - 0.46 \cos\left(\frac{2\pi n}{N-1}\right), 0 \le n \le N-1$$
 $h'(n) = h(n) w(n), 0 \le n \le N-1$

8
$$h(n) = \frac{1}{N} \underbrace{K = 0}_{K = 0} \underbrace{H(k)}_{E = 0} \underbrace{j_{E}^{2\pi} h}_{K = 0} + H(2) \underbrace{j_{E}^{2\pi} h}_{N^{2}} + H(N-1)}_{K = 0} \underbrace{e^{j_{E}^{2\pi} h}_{N^{2}} + H($$