



## Internal Assesment Test - II

| Sub:  | Information Theory and Coding |           |         | Sec | ECE 5C & 5D ;TCE 5A & 5B |    |      |   | Code:   | 15EC54  |
|-------|-------------------------------|-----------|---------|-----|--------------------------|----|------|---|---------|---------|
| Date: | 09 / 11 /17                   | Duration: | 90 mins |     | Max Marks:               | 50 | Sem: | V | Branch: | ECE/TCE |

## ANSWER ANY FIVE FULL QUESTIONS

OBE MARKS RBT

1 For the joint probability matrix given, calculate H(X), H(Y), H(X,Y), H(X|Y), H(Y|X) and I(X;Y), if  $P(X) = \left\{\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right\}$ 

$$P(Y|X) = \begin{bmatrix} 0.8 & 0.2 & 0\\ 0.1 & 0.8 & 0.1\\ 0 & 0.2 & 0.8 \end{bmatrix}$$

[10]

- 2 Derive an expression for the channel capacity of a binary erasure channel.
- [10] C504.3 L3

C504.3

L3

- 3 The noise characteristic of a channel is as shown in Fig. Q3 below. Obtain the channel matrix and calculate the channel capacity.
- [10] C504.3 L3



Prove the following properties of mutual information,

C504.3 L1

I(X,Y) = I(Y,X).a)

[05]

I(X,Y) = H(X) + H(Y) - H(X,Y).

- [05]
- 5 For a systematic (6, 3) linear block code, the parity matrix is given by
- C504.4 L2

$$P = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}.$$

Find all possible valid code vectors. a)

[03]

[02]

Draw the corresponding encoding circuit. b)

- [02]
- A single error has occurred in each of these received vectors. Detect and correct those errors.  $R_A = [011111]$  and  $R_B = [111001]$ .
- [03]

Draw the syndrome calculation circuit. d)

- Construct a standard array for (6, 3) codes namely, (000000), (001110), 6 (010011), (011101), (100101), (101011), (110110) and (111000). Let the received codeword be [011011]. Decode this codeword using this standard array and obtain the correct sequence.
- [10] C504.4

| /  | The parity check bits of a (7, 4) Hamming code are generated using                                      | [10] | C5U4.4 | L3 |
|----|---------------------------------------------------------------------------------------------------------|------|--------|----|
|    | $c_5 = d_1 + d_3 + d_4$                                                                                 |      |        |    |
|    | $c_6 = d_1 + d_2 + d_3$                                                                                 |      |        |    |
|    | $c_7 = d_2 + d_3 + d_4$                                                                                 |      |        |    |
|    | Obtain the generator matrix $[G]$                                                                       | [02] |        |    |
|    | Obtain the parity check matrix [H]                                                                      | [02] |        |    |
|    | From the obtained matrices show that $GH^T = 0$                                                         | [02] |        |    |
|    | Find the minimum distance of the code and calculate the error detecting                                 | [04] |        |    |
|    | and error correcting capability of the code.                                                            |      |        |    |
|    |                                                                                                         |      |        |    |
| 8  | Consider a linear block code whose generator matrix is                                                  |      | C504.4 | L3 |
|    | [1 0 0 1 0 1]                                                                                           |      |        |    |
|    | $G = egin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 \ 0 & 1 & 0 & 1 & 1 & 0 \ 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$ |      |        |    |
|    | lo o 1 o 1 1                                                                                            |      |        |    |
| a) | Find all the code vectors                                                                               | [03] |        |    |
| b) | Find all the hamming weights and minimum distance                                                       | [03] |        |    |
| c) | Obtain the parity check matrix                                                                          | [02] |        |    |
| d) | Draw the encoding circuit.                                                                              | [02] |        |    |

Solution for JAT- &



For the joint probability matrix calculate H(R), H(Y), H(X,Y), H(X|Y), H(Y|R) and I(X;Y) if  $P(X) = \frac{3}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2}$   $P(Y|X) = \begin{bmatrix} 0.8 & 0.9 & 0.7 \\ 0.1 & 0.8 & 0.1 \\ 0 & 0.2 & 0.8 \end{bmatrix}$ 

sol. Given P(x) = { b(a), b(a), b(a)} = { 1/3, 1/3}

1.0.k. 
$$P(X,Y) = P(Y|X) P(X)$$
  $Y_{1} Y_{2}$   $Y_{2} Y_{3} = \frac{9}{30}$   
 $P(X,Y) = \frac{2}{30} \frac{8}{30} \frac{9}{30} \frac{1}{30} \Rightarrow P(Y_{1}) = \frac{19}{30}$   
 $P(X,Y) = \frac{1}{30} \frac{8}{30} \frac{1}{30} \Rightarrow P(Y_{2}) = \frac{19}{30}$ 

$$(\omega.k., P(X,Y) = P(X|Y) P(Y) \Rightarrow P(X|Y) = P(X,Y)$$

$$P(X|Y) = \begin{bmatrix} \frac{2}{9} & \frac{1}{12} & 0 \\ \frac{1}{9} & \frac{8}{12} & \frac{1}{9} \\ 0 & \frac{2}{9} & \frac{8}{9} \end{bmatrix}$$

$$(6x) = \sqrt{(x)} \text{ for least downers}$$

#(x/x) =  $\frac{3}{2}$  |  $\frac{3}{2}$ 





.. The channel capacity of BEC in C= Max & I(X: Y) } = mex 3 / H(x) 3 (C= ) Willsec : H(x) max = log x = 1 3. The noise characteristic of a channel is as shown in Fig Q3 Obtain - the channel matrix and calculate capacity of the channel. X3 0.6 [0.8 0.1 0.1] [0.7] [0.8 log, 16.8 + 0.1 log, 16.1 + 0.1 log, 16.1] 0.2 0.6 0.2 [0.7] = [0.8 log, 16.8 + 0.6 log, 16.6 + 0.2 log, 16.4] 0.2 0.4 0.6 ] Q3] [0.2 log /0.2 t 0.4 log /0.2 t 0.6 log /06 0.80, +0.19, +0.19=0.972 152.1 = EP40 + 1903.0 + 1P4.0 0.40, + 0.40x + 0.60z = 1.371 Solving -lor Q, Q, and Q2 we have  $Q_1 = 0.7743$ ,  $Q_2 = 1.5407$ ,  $Q_3 = 1.5407$ = log[[-0,72] + 1-10, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 100, 1 = 1000

C = 0.3599 bits | sec

Prove-the properties of materal information  $\widehat{J}(X;Y) = \widehat{J}(Y;X)$ (b.k.i.  $H(x) = \sum_{i=1}^{\infty} b(x_i) \log \frac{1}{b(x_i)} \text{ bill by } \rightarrow 0$  $H(x|x) = \sum_{i=1}^{m} b(\alpha_i, q_i) \log_{x} \frac{1}{b(\alpha_i|q_i)} b(\alpha_i|q_m) \rightarrow \emptyset$  $\geq p(q_i | \alpha_i) = 1 \rightarrow 2$  $I(x; y) = H(x) - H(x|y) \rightarrow \mathbb{Q}$ since R.H.s. Of equation 3 in unity, eq () can be written on  $H(x) = \sum_{i=1}^{n} b(x_i) \log_{x_i} \frac{1}{1} \cdot \sum_{i=1}^{n} b(x_i) \log_{x_i} \frac{1}{1}$  $= \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} b(q_j|\alpha_i) p(\alpha_j) \log \frac{1}{p(\alpha_j)}$  $= \sum_{i=1}^{\infty} \frac{1}{i} \log \frac{1}{i} \log \frac{1}{i} \log \frac{1}{i} \log \frac{1}{i} \log \frac{1}{i}$ substituting eq y and s' in 4  $I(x;x) = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} b(x_i, y_j) \log_{y} \frac{b(x_i|y_j)}{b(x_i)} \rightarrow \emptyset$  $(\omega, \kappa, \iota) = \underbrace{b(\alpha; |\alpha|)}_{b(\alpha; i)} = \underbrace{b(\alpha; |\alpha|)}_{b(\alpha; i)} \rightarrow \mathbb{D}$ Substituting ean a in 6  $I(x;y) = \sum_{i=1}^{m} \sum_{j=1}^{n} b(x_i, y_i) \log \frac{b(y_i|x_i)}{b(y_i)}$  $\left[J(x;\lambda)=J(\lambda;x)\right]$ 



[c] = [d, d, d, (d, td) (d, td) (d, td)]





```
6. Construct a standard array lookuptable
                                                           111000
                                                    110110
   000000
                                             1101011
                                     100101
             001110
                              101110
                      010011
                                                           011000
   100000
                                                    0110110
              101110
                                             110100
                                     101 000
                      110011
                              1111101
                                                           101000
   010000
                                                    100110
              011110
                                             111011
                              101100
                                      1101011
                      000011
                                                           110000
                                                    111110
   001000
              000110
                                             100011
                      (01011)
                                      101101
                              010101
                                                            111100
                                                     110010
   000100
              001010
                                             100011
                      111010
                                      100001
                              100110
                                                            111010
   0000010
              001100
                                                     110100
                                              101001
                      100010
                                       100111
                              111110
                                                            111001
   100000
                                                     1110111
              111100
                                              101010
                      010010
                                       100100
                               01110
  Given R=011011 > E=001000
                   : c=010011 which is a valid codeward too D=010
-7. The family check bits of a (2,4) Hamming cools are generaled using
      es = ditdstdy
      co = d, +d, +ds
      Ca = do + do + du
 The generator matrix
                                  Parity check motiva
                                  H= [110]
100
010
010
010
010
010
   C= 010001110
      GH7 = 000
000
 Code words -16r all 16 combination
    doin = 3
   error detection capability = dmin-1 = 1
```

