1b

SCHEME AND SOLUTION

Internal Assessment Test I – NOV 2017

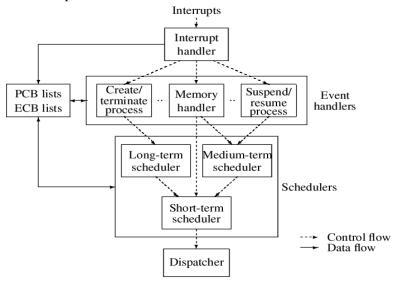
Sub:	OPERATING SYSTEMS						Code:15EC553		
Date:	8/ 11 /2017	Duration:	90 mins	Max Marks:	50	Sem:	V	Branch:ECE(A)/TCE (A &B)	

Note: Answer any five questions:

Explain the operation of long, medium and short term schedulers with neat diagrams.

6M

Explanation -4M


Diagram-2M

A single scheduler cannot provide the desired combination of performance and user service, so an OS uses three schedulers

- Long-term scheduler
 - * Decides when to admit an arrived process
 - Uses nature of a process, availability of resources to decide
- Medium-term scheduler
 - Performs swapping
 - Maintains a sufficient number of processes in memory
- Short-term scheduler

Decides which ready process should operate on the CPU

- An event handler passes control to the long- or medium-term scheduler
- These schedulers pass control to the short-term scheduler

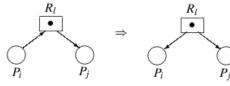
Write Short notes on a)Direct and Indirect Naming. b)Blocking and Non blocking AM Sends.

Explanation about Direct and Indirect Naming-2M Explanation about Blocking and Non blocking Sends-2M

- * Direct and indirect naming
 - Direct: Process names are specified in send / receive commands
 - Indirect: Process names are inferred by the kernel
 - Synchronous message passing: sender is blocked
 - Simplifies message passing, saves memory
 - Asynchronous message passing: sender is not blocked

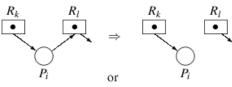
2a	Expla	ious issues in message mation about issues-2 M mation about exeptional		6M
		Issues		
	 Naming of processe Method for transfer Kernel responsibilit 	ring messages.		
	Exceptional conditions 1.Destination process of 2.Receiving process of 3.buffer full condition 4.No message exist	donot exist oesnot exist		
2b	Compare Contiguou	s and Non Contiguous n	memory allocation.	4M
	4 differences each o	carrying 4M Contiguous	Noncontiguous	
	1.Overhead 2.Allocation 3.Reuse of memory 4.Swapping	No single area Internal fragmentation relocation register	address translation several areas paging-No external Segmentation-No internal swapped in process can be placed anywhere.	
3	by ensuring the den	3 methods-2M with diagram-8M detection and resolution prevention	ethods.Explain the deadlock prevention approach tions of deadlocks with appropriate diagrams.	10M
	- How t * *	cannot arise ple policy Allocate all resources re wait condition is never This policy is e	ention approach? s for deadlock hold simultaneously; i.e., make sure that one of them equired by a process together. Hence the hold-and-	

Approach

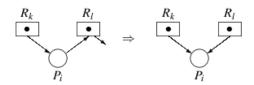

Illustration

Without this approach

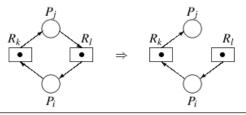
With this approach


(a) Make resources shareable
 → No waits

 Process P_i does not get blocked on resource R_i.


(b) Prevent Hold-and-waits → No paths with > 1 process Process P_i is either not permitted to block on resource R_l, or it is not allowed to hold R_k while making a

new request.



- (c) Make resources preemptible
 - \rightarrow No circular paths Resource R_l is preempted and allocated to P_i .

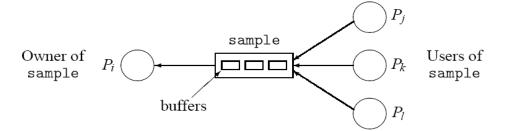
(d) Prevent circular waits
Process P_j is not permitted
to request resource R_l .

Explain the operation of mailboxes with appropriate system calls and diagrams. Also mention its advantages considering an example of airline reservation server using three mailboxes.

10M

Explanation about system calls-2M Mailbox diagram → -2M Explanation-4M Psedocode-2M

create_mailbox (sample);


•••

receive (sample, '...');

process P

 \dots send (sample, '...');

...

A mailbox has a name and is a repository of messages

- Processes connect to a mailbox and send / receive messages from it
- Benefits of using a mailbox
 - Anonimity of receiver
 - * A sender process need not know identity of receiver process
 - Classification of messages
 - * A process can use numerous mailboxes, one for each kind of message
 - *
- An airline reservations process uses three mailboxes—book, enquire, receive
- This way it can process cancellations followed by bookings followed by queries

repeat

while receive (book, flags₁, msg_area₁) returns a message while receive (cancel, flags₂, msg_area₂) returns a message process the cancellation;

process the booking;

if receive (enquire, flags₃, msg_area₃) returns a message then while receive (cancel, flags₂, msg_area₂) returns a message process the cancellation;

process the enquiry;

forever

Consider the following snapshot of resource allocation at time t1 for a system which has 4 processes P1,P2,P3 and P4 with R1-5, R2-7 and R3-5 units of resource classes respectively.

- a) Show that the system is not deadlocked by generating a safe sequence.
- b) At an instance of time t2, process P2 requests for an additional resource of R1 class. Show that the system is in deadlock if the request is granted and show the deadlock processes.

P1

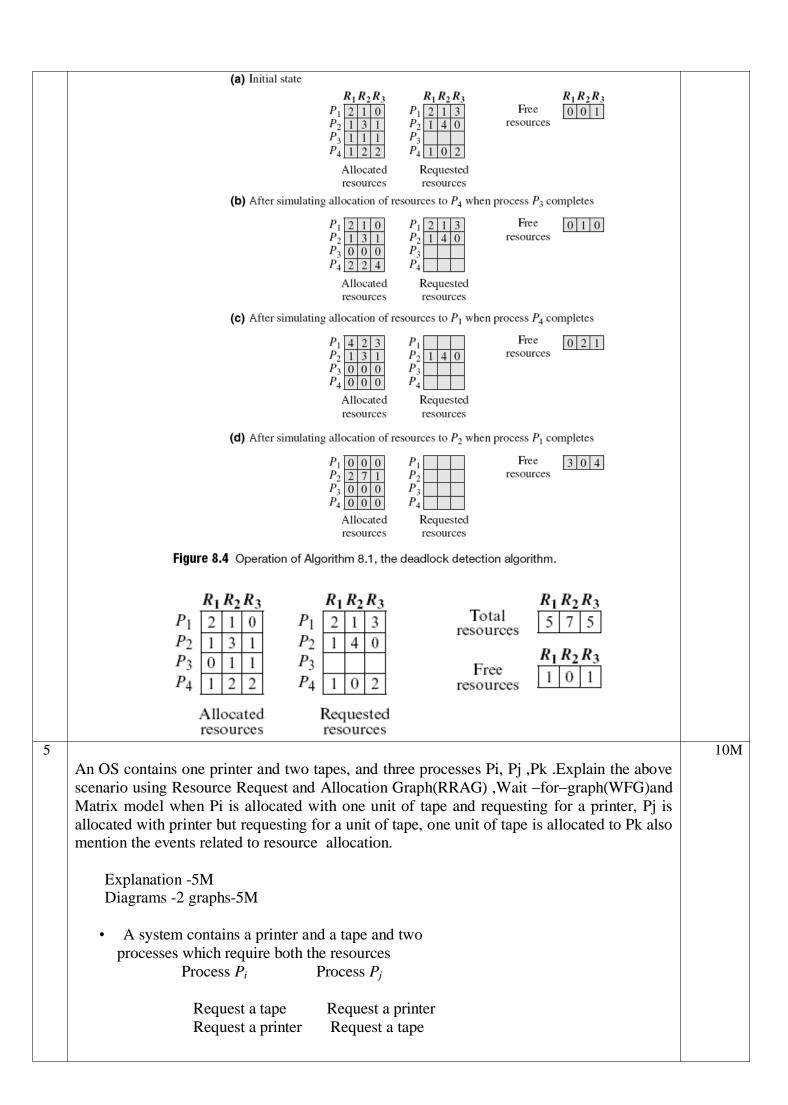
	R1	R2	R3
P1	2	1	0
P2	1	3	1
P3	1	1	1
P4	1	2	2

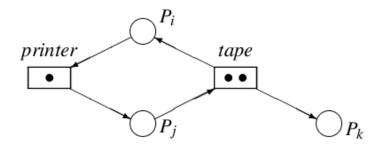
P2	1	4	(
P3			
P4	1	0	2

R1

Allocated resources

Requested resources


R2


R3

3

Solving the safe sequence-8M Showing the deadlock condition-2M

10M

- The printer is allocated to P_j
- The units of tape are allocated to P_i and P_k P_i has requested a printer and P_j has requested a tape
- Matrix model

	Printer	Tape		Printer	Tape		Printer	Tape
P_i	0	1	P_i	1	0	Total resources	1	2
P_{j}	1	0	P_{j}	0	1			
P_k	0	1	P_k	0	0	Free resources	0	0
		cated urces		Requ resou	ested arces			

Calculate the Mean turnaround time and Mean weighted turnaround time for the following processes using Least Completed Next(LCN) and Round Robin(RR) scheduling algorithm with suitable graph

Process	P1	P2	P3	P4	P5
Arrival time	0	2	3	5	9
Service Time	3	3	2	5	3

LCN-5M RR-5M Solving the instance with table-2M Timing diagram-4 M

4M

	Round-r	obin	Least completed	next	Shortest tin	ne to go
	(RR)		(LCN)	(STG)		
		Sche-		Sche-		Sche-
Time	Processes	duled	Processes	duled	Processes	duled
0	P_1	P_1	P ₁ :0	P_1	P ₁ :3	P_1
1	P_1	P_1	<i>P</i> ₁ :1	P_1	P ₁ :2	P_1
2	P_2, P_1	P_2	$P_1:2, P_2:0$	P_2	$P_1:1,P_2:3$	P_1
3	P_1, P_3, P_2	P_1	$P_1:2,P_2:1,P_3:0$	P_3	$P_2:3,P_3:2$	P_3
4	$P_3, P_2 P_3$		$P_1:2,P_2:1,P_3:1$	P_2	$P_2:3,P_3:1$	P_3
5	P_2, P_4, P_3	P_2	$P_1:2,P_2:2,P_3:1,P_4:0$	P_4	$P_2:3,P_4:5$	P_2
6	P_4, P_3, P_2	P_4	$P_1:2,P_2:2,P_3:1,P_4:1$	P_3	$P_2:2,P_4:5$	P_2
7	P_3, P_2, P_4	P_3	$P_1:2,P_2:2,P_4:1$	P_4	$P_2:1,P_4:5$	P_2
8	P_2, P_4	P_2	$P_1:2,P_2:2,P_4:2$	P_1	P ₄ :5	P_4
9	P_4, P_5	P_4	$P_2:2,P_4:2,P_5:0$	P_5	$P_4:4,P_5:3$	P_5
10	P_5, P_4	P_5	$P_2:2,P_4:2,P_5:1$	P_5	$P_4:4,P_5:2$	P_5
11	P_4, P_5	P_4	$P_2:2,P_4:2,P_5:2$	P_2	$P_4:4,P_5:1$	P_5
12	P_5, P_4	P_5	$P_4:2,P_5:2$	P_4	P ₄ :4	P_4
13	P_4, P_5	P_4	$P_4:3,P_5:2$	P_5	P ₄ :3	P_4
14	P_5, P_4	P_5	P ₄ :3	P_4	P ₄ :2	P_4
15	P_4 P_4		P ₄ :4	P_4	P ₄ :1	P_4
16	_	_	_	-	_	_

	Round-robin (RR)			Least completed next (LCN)			Shortest time to go (STG)		
Process	C	ta	w	C	ta	w	C	ta	w
P_1	4	4	1.33	9	9	3.00	3	3	1.00
P_2	9	7	2.33	12	10	3.33	8	6	2.00
P_3	8	5	2.50	7	4	2.00	5	2	1.00
P_4	16	11	2.20	16	11	2.20	16	11	2.20
P_5	15	6	2.00	14	5	1.67	12	3	1.00

 \overline{ta} = 6.6 Seconds \overline{ta} = 7.8 Seconds \overline{ta} = 5.0 Seconds \overline{w} = 2.07 \overline{w} = 2.40 \overline{w} = 1.44

1.

(b) Define Turnaround Time and Throughput. Calculate the Mean turnaround time and Mean weighted turnaround time for the following processes using FCFS scheduling algorithm with suitable graph.

6M

Process	P1	P2	P3	P4	P5
Arrival time	0	2	3	5	9
Service Time	3	3	2	5	3

Definitions-2M Final answer -4M

Throughput: The average number of jobs, programs, processes or subrequests completed by a system in unit time.

Turnaround time: Time interval between submission of a job and its completion.

TIME	ID	TA	W	PROCESS IN SYSTEM	SCHEDULED
0	-	-	-	{P1}	P1
3	P1	3	1.0	{P2,P3}	P2
6	P2	4	1.33	{P3,P4}	P3
8	Р3	5	2.50	{P4}	P4
13	P4	8	1.60	{P5}	P5
16	P5	7	2.33	{}	-

Turn around Time=5.40 sec Weighted turnaroung time=1.75