| TICN |  |  |  |  |  |
|------|--|--|--|--|--|
| UBIN |  |  |  |  |  |



## **IMPROVEMENT TEST**

| Sub:  | DIGITAL SIGNAL PROCESSING |           |         |            |    |      |   | Code:   | 15EC52             |  |
|-------|---------------------------|-----------|---------|------------|----|------|---|---------|--------------------|--|
| Date: | 18 / 11 / 2017            | Duration: | 90 mins | Max Marks: | 50 | Sem: | V | Branch: | ECE(C,D), TCE(A,B) |  |

**Answer any 5 full questions** 

|       | Answer any 5 run questions                                                                                                                                       |       |         |     |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------|-----|
|       |                                                                                                                                                                  | Marks | CO      | RBT |
| 1.    | Design an analog Butterworth filter with a maximum passband ripple of 2 dB at 1 rad/sec and stopband attenuation of 30 dB at 3 rad/sec.                          | [10]  | CO502.3 | L3  |
| 2.    | Design an analog Type-I Chebyshev filter with a maximum passband ripple of 2 dB at 1 rad/sec and stopband attenuation of 30 dB at 2 rad/sec.                     | [10]  | CO502.3 |     |
| 3.    | Explain the impulse invariant transformation method of transforming an analog filter transfer function to digital filter transfer function.                      | [10]  | CO502.3 |     |
| 4.    | Explain bilinear transformation method of transforming an analog filter transfer function to digital filter transfer function.                                   | [10]  | CO502.3 | L2  |
| 5.    | Obtain DF-II and DF-II structure of the filter given by $H(z) = \frac{(z-1)(z^2+5z+6)(z-3)}{(z^2+6z+5)(z^2-6z+8)}$                                               |       | G0502.4 | 1.0 |
| 6.    | Obtain the cascade and parallel realization of the system                                                                                                        | [10]  | CO502.4 | L2  |
| 7.    | $H(z) = \frac{1 + \frac{1}{3}z^{-1}}{(1 - \frac{1}{5}z^{-1})(1 - \frac{3}{4}z^{-1} + \frac{1}{8}z^{-2})}$ An EID Sharis represented by the difference equation   | [10]  | CO502.4 | L2  |
| /.    | An FIR filter is represented by the difference equation $y(n) = x(n) + \frac{2}{5}x(n-1) + \frac{3}{4}x(n-2) + \frac{1}{3}x(n-3).$ Obtain the lattice extracture |       |         |     |
| 8(a). | Obtain the lattice structure.  Realize the FIR filter having the following impulse response, using linear phase                                                  | [10]  | CO502.4 | L2  |
|       | structure. $h(n) = \delta(n) - \frac{1}{4}\delta(n-1) + \frac{1}{2}\delta(n-2) + \frac{1}{2}\delta(n-3) - \frac{1}{4}\delta(n-4) + \delta(n-5)$                  |       |         |     |
| 8(b). | Mention the four types of analog to analog frequency transformations.                                                                                            | [06]  | CO502.4 |     |
|       |                                                                                                                                                                  | [04]  | CO502.3 | L1  |

$$A_{PB} = 2 dB$$

$$A_{SB} = 30 dB$$

$$\Sigma_{PB} = 1 \text{ rad/s}$$

$$\Sigma_{SB} = 3 \text{ rad/s}$$

$$N = 0.5 \log_{10} \cdot \frac{10 - 1}{6.1488 - 1}$$

$$\log_{10} \cdot \frac{\Sigma_{PB}}{\Sigma_{SB}}$$

$$D = 1.0693 \text{ rad/s}$$

$$S_{0,3} = -0.4092 \pm j 0.9879$$

$$S_{1,3} = -0.9879 \pm j 0.4092$$

$$H(S) = \frac{1.3074}{(s^2 + 0.8184s + 1.143s)} (s^2 + 1.9759s + 1.143s)$$

$$\frac{1}{\cos h'} \left( \frac{s_{SB}}{s_{PB}} \right)$$

$$R = \left[\frac{1+\sqrt{1+\epsilon^2}}{\epsilon}\right]^{\frac{1}{N}} = 1.311$$

$$S_{0.3} = -0.1049 \pm j 0.958$$

$$S_{0,3} = -0.1049 \pm j 0.958$$
  
 $S_{1,2} = -0.2532 \pm j 0.3968$ 

$$H(s) = \frac{0.1634}{\left(s^2 + 0.2098S + 0.9287\right)\left(s^2 + 0.5064S + 0.2216\right)}$$

$$h(n) = \sum_{k=1}^{N} b_k e^{knT_s}$$

$$H(z) = \begin{cases} 0 \\ 0 \\ 0 \end{cases}$$

$$= \frac{1}{|A|} \frac{b_{K}}{|A|} = \frac{1}{|A|} \frac{b_$$

Mapping is unique only in the range

$$-\frac{f_{3}}{2}\leq\Delta\leq\frac{f_{2}}{2}$$

$$H(S) = \frac{b}{S+a}$$

$$\frac{dy(t) + ay(t) = bx(t)}{dt}$$

aty (+) 
$$dt + a = b = \int \Re(t) dt$$
 $\int \frac{d}{dt} y(t) dt + a = \int \Re(t) dt$ 
 $\int \frac{d}{dt} y(t) dt + \int \Re(t) dt$ 
 $\int \frac{d}{dt} y(t) dt + \int \Re(t) dt$ 
 $\int \frac{d}{dt} y(t) dt + \int \Re(t) dt$ 

$$H(2) = \frac{b}{a + \frac{2}{5} \frac{2-1}{2+1}}$$

$$\Omega = \frac{2}{T_S} \tan \left(\frac{w}{2}\right)$$

Hence is no aliasing

Hence, there is no aliasing.

$$H(2) = \frac{(z^2 - 4z+3)(z^2+5z+6)}{(z^2+6z+5)(z^2-6z+8)}$$

$$= 2^{4} + 5z^{3} + 6z^{2} - 4z^{3} - 20z^{2} - 24z + 3z^{2} + 15z + 18$$

$$= 2^{4} - 6z^{3} + 8z^{2} + 6z^{3} - 36z^{2} + 48z + 5z^{2} - 30z + 40$$

$$= \frac{2^{4} + 2^{3} - 112^{2} - 92 + 18}{2^{4} - 232^{2} + 182 + 40}$$

$$= \frac{2^{4} - 232^{2} + 182^{4} + 40}{1 + 2^{2} - 112^{2} - 923 + 182^{4}}$$

$$= \frac{1}{1 - 232^{2} + 1123 + 4024}$$

$$y(n) = \alpha(n) + \chi(n-1) - 11 \alpha(n-2) - 9 \alpha(n-3) + 18\chi(n-4) + 23 y(n-2) = 11y(n-3) - 40 y(n-4)$$



DF-II



$$H_1(2) = \frac{1}{1 - \frac{1}{5} 2^{1}}$$

$$y(n) = x(n) + \frac{1}{5}x(n-1)$$

$$\chi(n)$$
  $y(n)$ 

$$H_2(2) = \frac{1+\frac{1}{3}z^{\frac{1}{2}}}{1-\frac{3}{4}z^{\frac{1}{2}}+\frac{1}{8}z^{\frac{2}{2}}}$$

$$y(n) = y_2(n) + \frac{1}{3}y_2(n-1) + \frac{3}{4}y_2(n-1) - \frac{1}{8}y_2(n-2).$$



3-

Cascade realization

7/8



Parallel realization

$$H(2) = \frac{649}{1-\frac{1}{5}2!} + \frac{509}{1-\frac{1}{2}2!} + \frac{-35/3}{1-\frac{1}{4}2!}$$
 $64/a$ 



and the same of

$$K_3 = \frac{1}{3}$$
 $K_2 = \frac{111}{160}$ 
 $K_3 = 0.0419$ 

