

CMR
INSTITUTE OF
TECHNOLOGY

USN

Improvement Test – Nov. 2017

Sub: Verilog HDL Sub Code: 15EC53 Branch: ECE & TCE

Date: 21 / 11 / 2017 Duration: 90 min’s Max Marks: 50 Sem / Sec: 5 / All sec OBE
Answer any FIVE FULL Questions MARKS CO RBT

1 Explain the advantages and shortcomings of using VHDL? [10] CO4 L1
2 Explain the process of digital system synthesis using VHDL in detail. [10] CO4 L2
3 Describe the different VHDL description styles with examples. [10] CO4 L3
4 a) What is the output of the synthesizer (optimized logic expression) for the following

sequence of code:
architecture behavioral of eqcorop4 is
begin
syntp: process (c, d)

begin
x <= '0'; y <= '1';
if (c = '0' and d = '0') then

x<=’1’;
elsif (c = '0' and d = '1') then

x<=’1’;
elsif (c=’1’ and d = ‘1’) then

y<=’0’;
end if;
end process syntp;

end behavioral;

[4]

CO4 L4
4 b) Draw the simulation waveform for the following sequence of code:

architecture a_model of two_gates
begin

x <= a AND b after 5 ns;
y <= not b;

end a_model;

[6]
CO4 L4

5 Write the entity declaration for a 4-bit magnitude comparator. Name the output
port ‘altb’ for a less than b. Then write architecture bodies’ one using if-then-else
statement, one using when-else statement and one using component instantiation
statements and components similar to xnor2 and and4 components. (Hint: the <
symbol is used as relational operator for “less than”). Which architecture body is
needed to be modified if it is an 8-magnitude comparator? And what are the
modifications. [10] CO4 L4

6 Explain the components of VHDL program and discuss the different ports
supported by VHDL. [10] CO4 L2

7 Explain the data objects, data types of VHDL. What are attributes? Explain with
examples. [10] CO4 L2

1

Ans:

Explain the advantages and shortcomings of using VHDL?

Advantages of using VHDL:
i) Power and Flexibility

VHDL not only gives you the power to describe circuits quickly using powerful
language constructs but also permits other levels of design description including
Boolean equations and structural netlists.

ii) Device-Independent Design
VHDL permits the creation of design without having to first choose a device for
implementation. With one design description, one target many device architectures.
No need to be familiar with a device's architecture in order to optimize your design
for resource utilization or performance.

iii) Portability
VHDL's portability permits design used for synthesis can be used for simulation as
well. Since VHDL is a standard language, design description can be taken from one
simulator to another, one synthesis tool to another, and one platform to another.

iv) Benchmarking Capabilities
Device independent design and portability gives us the ability to benchmark the
design using different architectures and different synthesis tools. Without targeting
the device one can complete design and synthesize it, creating logic for an
architecture of choice. Then evaluate the results and choose the device that best fits
your design requirements.

v) ASIC Migration
The same design description used to synthesize logic for a programmable logic
device can be used for an ASIC when production volumes ramp. VHDL permits
your product to hit the market quickly in programmable logic by synthesizing your
design description for an FPGA. When production volumes reach appropriate
levels, the same VHDL code can be used in the development of an ASIC.

vi) Fast Time-to-Market and Low Cost
VHDL and programmable logic pair well together to facilitate a speedy design
process. VHDL permits designs to be described quickly. Programmable logic
eliminates nonrecurring expenses (NREs) and facilitates quick design iterations.

Shortcomings
There are three common concerns expressed by design engineers about VHDL:

(1) You give up control of defining the gate-level implementation of circuits that are
described with high-level, abstract constructs:
The intent of using VHDL as a language for synthesis is to free the engineer from
having to specify gate-level circuit implementation. But one should understand how
compiler synthesizes the logic. There is a need to dictate implementation policy.

(2) The logic implementations created by synthesis tools are inefficient:
VHDL compilers will not always produce optimal implementations. Compilers use
algorithms to decide upon logic implementations, following standard design
methodologies. An algorithm cannot look at a design problem in a unique way.

(3) The quality of synthesis varies from tool to tool:
Different synthesizers look different designs in their own way. Results in best or worst
logic implementations.

[10]

7 marks

3 marks

2 Explain the process of digital system synthesis using VHDL in detail.
The design process can be broken into the six steps enumerated below:

1. Define the Design Requirements:
Decide upon design objectives and requirements like function of the design, required
setup and clock-to-out times, maximum frequency of operation, and critical paths.
Having a clear idea of the requirements help to choose a design methodology and helps
to choose a device architecture to which design will be synthesized.

2. Describe the Design in VHDL (Formulate and Code the Design):
Formulate the Design: Decided upon a design methodology. Such as top-down, bottom-
up, or flat. The first two methods involve creating design hierarchies, the latter involves
describing the circuit as one monolithic design. The top-down approach requires that
you divide your design into functional blocks, each block having specific inputs and
outputs and performing a particular function. A netlist is then created to tie the
functional blocks together. The bottom-up approach involves just the opposite: defining
and designing the individual blocks of a design, then bringing the different pieces
together to form the overall design. A flat design is one in which the details of functional
blocks are defined at the same level as the interconnection of those functional blocks.
Code the Design: The key to writing good VHDL code is to think in terms of hardware
and being careful of
syntax and semantics

3. Simulate the Source Code:
For large designs, simulating the design source code with a VHDL simulator will prove
time efficient. The process of concurrent engineering brings circuit simulation to the
early stages of design. If the design does not simulate as expected, then you can check
your code and make the appropriate corrections before proceeding.

4. Synthesize, Optimize, and Fit (Place and Route) the Design:
Synthesis is the realization of design descriptions into circuits. In other words, synthesis
is the process by which logic circuits are created from design descriptions. VHDL
synthesis software tools convert VHDL descriptions to technology-specific netlists or
sets of equations. Synthesis tools allow designers to design logic circuits by creating
design descriptions without having to perform all of the Boolean algebra or create
technology-specific, optimized netlists. Synthesis should be technology specific.
Synthesis should be technology specific. Figure shown below illustrates the synthesis
and optimization processes. The synthesis process then converts the design to internal
data structures, allowing the "behavior" of a design to be translated to a register transfer
level (RTL) description. RTL descriptions specify registers, signal inputs, signal
outputs, and the combinational logic between them. At this point, the combinational
logic is still represented by internal data structures. Some synthesis tools will search the
data structures for identifiable operators and their operands, replacing these portions of
logic with technology-specific, optimized components. Other portions of logic that are
not identified are then converted to Boolean expressions that are not yet optimized.

[10]

The optimization process depends on three things: the form of the Boolean expressions,
the type of resources available, and automatic or user-applied directives (sometimes
called constraints). Some forms of expressions may be mapped to logic resources more
efficiently than others. Other user or automatic constraints may be applied to optimize
expressions for the available resources. These constraints may be to limit the number
of appearances of a literal in an expression (to reduce signal loading), limit the number
of literals in an expression (to reduce fan-in), or limit the number of terms in an
expression (to limit the number of product terms).
"Fitting" is the process of taking the logic produced by the synthesis and optimization
processes, and placing it into a logic device, massaging the logic (if necessary) to obtain
the best fit. Placing and routing is the process of taking logic produced by synthesis and
optimization, packing the logic (massaging it if necessary) into the FPGA logic
structures (logic cells), placing the logic cells in optimal locations, and routing signals
from logic cell to logic cell or 110. For brevity, we will use the terms "fit" and "place
and route" interchangeably, leaving you to discern when we mean to use one or both
terms. A "good" placement and route will place critical portionsof a circuit close
together to eliminate routing delays.

5. Simulate the Post-fit (layout) Design Implementation
A post-layout simulation enables us to verify not only the functionality of the design
but also the timing, such as setup, clock-to-output, and register-to register times. If
design is unable to meet your design objectives, then one has to resynthesize and fit
design to a new logic device, massage any combination of the synthesis or fitting
processes, or choose a different speed grade device.

6. Program the Device
After completing the design description, and synthesizing, optimizing, fitting, and
successfully simulating the design, program the device and continue work on the rest
of system design. The synthesis, optimization, and fitting software will produce a file
for use in programming the device.

10 marks

3 Describe the different VHDL description styles with examples.

The different styles of VHDL descriptions are
I. Behavioral Descriptions: The following is an example of behavioral description:

library ieee;
use ieee.std_logic_1164.all;
entity eqcomp4 is port(a,b:in std_logic_vector(3 downto 0);
equals: out std_logic);
end eqcomp4;
architecture behavioral of eqcomp4 is
begin
comp: process (a, b)
 begin
 if a = b then

equals<= ‘1’;
else
 equals<= ‘0’;
end if;

end process comp;
end behavioral;
The architecture of the design is put in an algorithmic way. Behavioral descriptions
are sometimes referred to as "high-" descriptions because of the resemblance to high-
level programming languages. Rather than specifying the structure or netlist of a
circuit, signal assignments, or circuit "behavior” is specified. The advantage of high-
level descriptions is that no need to focus on the gate-level implementation of a design;
instead, one can focus their efforts on describing how the circuit is to "behave."

II. Dataflow Assignment: The following is an example of dataflow description:
library ieee;
use ieee.std_logic_1164.all;
entity eqcomp4 is port(a,b:in std_logic_vector(3 downto 0);
equals: out std_logic);
end eqcomp4;
architecture dataflow of eqcomp4 is
begin
 equals <= '1' WHEN (a = b) ELSE '0';
end dataflow;
It is called dataflow description because it specifies how data will be transferred from
signal to signal without the use of sequential statements. Dataflow descriptions are
used in those cases where it's more succinct to write simple equations or CASE-WHEN
or WITH-SELECT-WHEN statements rather than a complete algorithm.

III. Structural Descriptions: The following is an example of structural description:
library ieee;
use ieee.std_logic_1164.all;
entity eqcomp4 is port(a,b:in std_logic_vector(3 downto 0);
equals: out std_logic);
end eqcomp4;
USE work.gatespkg.all;
architecture struct of eqcomp4 is
SIGNAL x : STD_LOGIC_VECTOR(O to 3);
begin
u0: xnor2 port map (a(O) ,b(O) ,x(O));
u1: xnor2 port map (a(l) ,b(l) ,x(l));
u2: xnor2 port map (a(2) ,b(2) ,x(2));
u3: xnor2 port map (a(3) ,b(3) ,x(3));
u4: and4 port map (x(O) ,x(l) ,x(2) ,x(3) ,equals);
END struct;

[10]

3 marks

3 marks

Structural descriptions consist of VHDL netlists. These netlists are very much like
schematic netlists: Components are instantiated and connected together with signals.
Structural designs are hierarchical. In this example, separate entity and architecture
pairs are created for the and4, xnor2, and eqcomp4 designs. This design requires that
and4 and xnor2 components be defined in a package. One can access these components
by including a USE clause, which allows us to instantiate components from the
“gatespkg” package found in the work library. The eqcomp4 design contains instances
of the xnor2 and and4 components. The xnor2 and and4 components must each have
associated entity and architecture pairs. The entity and architecture descriptions for the
xnor2 and and4 are not contained in the design file for our eqcomp4 component, rather
they are accessed by way of the USE clause.

4 marks

4 a) What is the output of the synthesizer (optimized logic expression) for the following sequence
of code:
architecture behavioral of eqcorop4 is
begin
syntp: process (c, d)

begin
x <= '0'; y <= '1';
if (c = '0' and d = '0') then

x<=’1’;
elsif (c = '0' and d = '1') then

x<=’1’;
elsif (c=’1’ and d = ‘1’) then

y<=’0’;
end if;
end process synth;

end behavioral;

The optimized logic expressions obtained after logic synthesis are

ݔ = ܿ̅,
ݕ = ܿ . ݀തതതതത

[4]

4 marks

4 b) Draw the simulation waveform for the following sequence of code:
architecture a_model of two_gates
begin

x <= a AND b after 5 ns;
y <= not b;

end a_model;

[6]

6 marks

5 Write the entity declaration for a 4-bit magnitude comparator. Name the output port ‘altb’ for
a less than b. Then write architecture bodies’ one using if-then-else statement, one using
when-else statement and one using component instantiation statements and components
similar to xnor2 and and4 components. (Hint: the < symbol is used as relational operator for
“less than”). Which architecture body is needed to be modified if it is an 8-magnitude
comparator? And what are the modifications.
The entity declaration with port name ‘altb’ for a less than b is
entity ltcomp is
 Port (a, b : in STD_LOGIC_VECTOR (3 downto 0);
 altb : out STD_LOGIC);
end ltcomp;

The architecture behavioral defined using if-then-else statement is as shown
below:
architecture behavioral of ltcomp is
begin
p1: process(a,b)
 if(a < b) then
 altb <= '1';
 else
 altb <= '0';
 end if;
end process p1;
end behavioral;

The architecture dataflow defined using when-else statement is as shown below:
architecture dataflow of ltcomp is
begin

altb <= '1' when (a < b) else '0';
end dataflow;

The architecture structural defined using component instantiation similar to xnor2
and and4 components is as shown below:
architecture structural of ltcomp is
SIGNAL x : STD_LOGIC_VECTOR(0 to 13);
begin

[10]

2 marks

2 marks

u00: inv port map (a(0), x(0));
u01: inv port map (a(1), x(1));
u02: inv port map (a(2), x(2));
u03: inv port map (a(3), x(3));

u04: and2 port map (x(0), b(0), x(4));
u05: and2 port map (x(1), b(1), x(5));
u06: and2 port map (x(2), b(2), x(6));
u07: and2 port map (x(3), b(3), x(7));

u08: xnor2 port map (a(1), b(1), x(8));
u09: xnor2 port map (a(2), b(2), x(9));
u10: xnor2 port map (a(3), b(3), x(10));

u11: and2 port map (x(4), x(8), x(11));
u12: and2 port map (x(5), x(9), x(12));
u13: and2 port map (x(6), x(10), x(13));

u14: or4 port map (x(7), x(11), x(12), x(13), altb);
end structural;

The architecture with name structural is needed to be modified in order to design
implement 8-bit magnitude comparator.
The modifications are

I. Signal declaration should be changed to
SIGNAL x : STD_LOGIC_VECTOR(0 to 29);

II. The instantiation of four more inv components.
III. The instantiation of eight more and2 components.
IV. The instantiation of four more xnor2 components.
V. 8-input OR(or8) gate is needed instead of 4-input OR(or4) gate.

architecture structural of ltcomp is
SIGNAL x : STD_LOGIC_VECTOR(0 to 29);
begin
u00: inv port map (a(0), x(0));
u01: inv port map (a(1), x(1));
u02: inv port map (a(2), x(2));
u03: inv port map (a(3), x(3));
u04: inv port map (a(4), x(4));
u05: inv port map (a(5), x(5));
u06: inv port map (a(6), x(6));
u07: inv port map (a(7), x(7));

u08: and2 port map (x(0), b(0), x(8));
u09: and2 port map (x(1), b(1), x(9));
u10: and2 port map (x(2), b(2), x(10));
u11: and2 port map (x(3), b(3), x(11));
u12: and2 port map (x(4), b(4), x(12));
u13: and2 port map (x(5), b(5), x(13));
u14: and2 port map (x(6), b(6), x(14));
u15: and2 port map (x(7), b(7), x(15));

u16: xnor2 port map (a(1), b(1), x(16));
u17: xnor2 port map (a(2), b(2), x(17));
u18: xnor2 port map (a(3), b(3), x(18));

2 marks

u16: xnor2 port map (a(4), b(4), x(19));
u17: xnor2 port map (a(5), b(5), x(20));
u18: xnor2 port map (a(6), b(6), x(21));
u16: xnor2 port map (a(7), b(7), x(22));

u11: and2 port map (x(16), x(8), x(23));
u12: and2 port map (x(17), x(9), x(24));
u13: and2 port map (x(18), x(10), x(25));
u11: and2 port map (x(19), x(11), x(26));
u12: and2 port map (x(20), x(12), x(27));
u13: and2 port map (x(21), x(13), x(28));
u13: and2 port map (x(22), x(14), x(29));
u14: or8 port map (x(15), x(23), x(24), x(25), x(26), x(27), x(28),
x(29), altb);
end structural;

4 marks

6 Explain the components of VHDL program and discuss the different ports supported by
VHDL.
An example VHDL program is as given below:
-- eqcomp4 is a four bit equality comparator

ENTITY eqcomp4 IS
PORT(a,b:in bit_vector(3 DOWNTO 0);equals: OUT BIT);
end eqcomp4;
ARCHITECTURE dataflow OF eqcomp4 IS
BEGIN
 equals <= '1' WHEN (a = b) ELSE '0'; -- equals is active high
END dataflow;

In the above VHDL program line 1 is a comment line. Comments help to document your
design; they are for the reader and are ignored by the compiler. Lines 3 describe the I/O of a 4-
bit equality comparator called eqcomp4. Lines 2 and 4 begin and end the declaration for the
eqcomp4 entity. A VHDL entity describes the inputs and outputs of a design. This could be the
I/O of a component in a larger, hierarchical design. Line 2 begins a port, or pin, declaration and
the characters ");" at the end of line 2 end the port declaration. Ports are points of
communication of the entity with anything outside of the entity. At the beginning of the line 3
of this example, we declare two ports called a and b. These ports are inputs to the design that
are 4-bit buses. Each member of the bus, a(0) for instance, is a BIT, which means it may have
the value of '0' of ‘1'. Finally, equals is declared as an output bit at the end of line 3. The entity
has a schematic symbol equivalent, as shown in following figure

Lines 5 through 8 describe what our entity, eqcomp4, does. This is called the architecture of
the entity; it begins on line 5 with the keyword ARCHITECTURE and ends with "END
dataflow” at line 8. In line 5, we give the architecture a name, dataflow, and identify the entity
that it describes: "OF eqcomp4." Line 6, obviously enough, begins the architecture description
with the keyword BEGIN, and line 7 is where the digital logic is described. This simple
architecture includes one equality comparator. Line 7 states that when the value of bus ‘a’ is
equal to the value of bus ‘b’, then equals gets '1', otherwise equals gets ‘0’. The ‘<=’ symbol
is an operator that can be read "gets" or "is assigned to. The most significant bits (MSB) for a

[10]

and b are the leftmost bits a(3) and b(3). The typical order of the bits are from "x downto 0"
in order that the most significant bit is the one with the highest index

The different types of ports supported by VHDL are IN, OUT, INOUT, or BUFFER.
IN: A port that is declared as mode IN describes a port in which data flows only into the entity.
The driver for a port of mode IN is external to the entity.
OUT: A port that is declared as mode OUT describes a port in which data flows only from its
source to the output port of the entity. The driver for a port of mode OUT is from within the
entity. Mode OUT does not allow for feedback within the associated architecture.
BUFFER: For internal feedback i.e., to use this port as a driver within the architecture, port
will be declared as mode BUFFER or mode INOUT. A port that is declared as mode BUFFER
is similar to a port that is declared as mode OUT, except that it does allow for internal feedback.
Mode BUFFER does not allow for bidirectional ports, however, because it does not permit the
signal to be driven from outside of the entity.
INOUT: Mode INOUT can be used anywhere that mode BUFFER is used; that is, everywhere
that mode BUFFER is used in a design could be replaced with mode INOUT.

6 marks

4 marks

7 Explain the data objects, data types of VHDL. What are attributes? Explain with examples.
Data objects are assigned types and hold values of the specified types. Data objects belong to
one of three classes: constants, signals, or variables.
Constants: A constant holds a specific value of a type that cannot be changed within the
design description, and therefore is usually assigned upon declaration.
Ex: constant width: integer := 8;
Signals: Signals can represent wires, and they can therefore interconnect components.
Ex: signal count: bit_vector(3 downto 0);
Variables: Variables are used only in processes and subprograms (functions and procedures)
and must therefore be declared in the declarative region of a process or subprogram.
Ex: variable result: integer := 0;
Aliases: An alias is an alternate identifier for an existing object; it is not a new object.
Ex: signal stored_ad: std_logic_vector(31 downto 0);
alias top_ad: std_logic_vector(3 downto 0) is stored_ad(31 downto 28);
alias bank: std_logic_vector(3 downto 0) is stored_ad(27 downto 24);
alias row_ad: std_logic_vector(ll downto 0) is stored_ad(23 downto 12);

Data Types:
A type has a set of values and a set of operations.
Scalar types:
Scalar types have an order that allows relational operators to be used with them. Scalar types
comprise four classes: enumeration, integer, floating, and physical types.
Enumeration Types:
An enumeration type is a list of values that an object of that type may hold.
Ex: type states is (idle, preamble, data, jam, nosfd, error);
signal current_state: states;

Integer Types:
An integer type can be defined, as well as a data object declared, with or without specifying a
range.
Ex: variable a: integer range 0 to 255;

Floating Types:

[10]

3 marks

The only predefined floating type is REAL, which includes the range -1.0E38 to + 1.0E38,
inclusive, at a minimum.

Physical Types
Physical type values are used as measurement units. The only predefined physical type is
TIME.
EX: TYPE time IS range -2147483647 to 2147483647
units
fs;
ps =1000 fs;
ns =1000 ps;
us =1000 ns;
ms =1000 us;
sec = 1000 ms;
min = 60 sec;
hr = 60 min;
end units;
Physical types do not carry meaning for synthesis

Composite Types:
Composite types define collections of values for which data objects of these types can hold
multiple values at a time.
Array Types: An object of an array type is an object consisting of multiple elements of the
same type.
Ex1: type word is array(15 downto 0) of bit;
 signal b: word;
Ex2: type table8x4 is array(O to 7, 0 to 3) of bit;
constant exclusive_or: table8x4 := ("000_0","001_1","010_1","011_0","100_1"
,"101_0","110_0","111_1") ;

Record Types:
An object of a record type is an object that can consist of multiple elements of different types.
Ex:
type iocell is record
buffer_inp: bit_vector(7 downto 0);
enable: bit;
buffer_out: bit_vector(7 downto 0);
end record;
signal busa, busb, busc: iocell;
signal vec: bit_vector(7 downto 0);
busa.buffer_inp <= vec;
busb.buffer_inp <= busa.buffer_inp;
busb.enable <= '1';
busc <= busb;

Types and Subtypes:
Declaration of different type data and its subtypes:
Ex1: type byte_size is range 0 to 255;
 signal my_int: byte_size;
Ex2: subtype byte is bit_vector(7 downto 0);
 signal by tel , byte2: byte;
 signal datal, data2: byte;
 signal addrl, addr2: byte;

Attributes
An attribute provides information about items such as entities, architectures, types, and
signals.
There are several predefined value, signal, and range attributes that are useful in synthesis.
Scalar types have value attributes. The value attributes are 'left, 'right, 'high, 'low, and 'length.
Ex:
type count is integer range 0 to 127;
type states is (idle, decision, read, write);
type word is array(15 downto 0) of std_logic;
count'left = 0
states'left = idle
word'left = 15
count'right = 127
states 'right write
word'right 0
count 'high 127
states'high = write
word'high 15
count'low 0
states'low = idle
A useful range attribute is the 'range attribute which yields the range of a constrained object.
For example: word' range = 15 downto 0

5 marks

2 marks

