Sub: Turbo-Machines
Date: \qquad

PART-A (Answer any THREE FULL Questions)

1. Draw the velocity triangle at inlet and exit of a turbomachine in general and derive modified Euler's equation. Also explain the significance of each term in the equation.(10 Marks)

(or)

$V_{1} \rightarrow$ Absolute Velocity of fluid at inlet.
$\alpha_{1} \rightarrow$ Angle made by V_{1}
$U_{1} \rightarrow$ Tangential Velocity of the rotor at inlet.
$V_{r} \rightarrow$ Relative Velocity of fluid at inlet.
$\beta_{1} \rightarrow$ Blade angle or Rotor angle.
$V_{w_{1}} \rightarrow$ Tangential Component of V_{1} at inlet or whirl vebcity.
$V_{P_{1}} \rightarrow$ Flow Velocity at inlet $=V_{R}$ or V_{A}.
The Subscript ' 2 ' are corresponding components at outlet.

Consider the outlet velocity $D^{\prime} c$ [(C) and (D)].
In both the cases, there are two possible right angle triangles. [consider either (c) or (1)].
$O^{=} 1 \rightarrow$ Comprising of $V_{P_{2}}, V_{2}$ and $V_{w_{2}}$.
$D^{\prime \prime 2} \rightarrow$ Comprising of $V_{f_{2}}, V_{r_{2}}$ and $\left(U_{2}-V_{w_{2}}\right)$.
From $D^{10} 1$,

$$
\begin{align*}
& V_{2}{ }^{2}=V_{p_{2}}{ }^{2}+V_{w_{2}}{ }^{2} \\
\Rightarrow & V_{p_{2}}{ }^{2}=V_{2}{ }^{2}-V_{w_{2}}{ }^{2}- \tag{1}
\end{align*}
$$

From D^{16} 2,

$$
\begin{equation*}
V_{r_{2}}{ }^{2}=V_{p_{2}}{ }^{2}+\left(U_{2}-V_{w_{2}}\right)^{2} \tag{2}
\end{equation*}
$$

But in Pig (c), U_{2} and $V_{w_{2}}$ are opp indirection. Hence $\left(u_{2}-V_{w_{2}}\right)$. In fig $(d), u_{2}$ and $V_{w_{g}}$ are in same direction. Hence for $D^{\text {le }} 2$ in fig (d), The base is $\left(V_{2}-V_{w_{2}}\right)$.
(2) $\Rightarrow V_{\rho_{2}}{ }^{2}=V_{1_{2}}{ }^{2}-\left[U_{2}-V_{\omega_{2}}\right]^{2}$

$$
\begin{align*}
& \text { (3) }=\text { (1) } \tag{3}\\
& \Rightarrow V_{2}{ }^{2}-V_{w_{2}}{ }^{2}=V_{r_{2}}{ }^{2}-u_{2}{ }^{2}-V_{w_{2}}{ }^{2}+2 u_{2} V_{w_{2}} . \\
& 2 u_{2} V_{w_{2}}=V_{2}{ }^{2}+u_{2}{ }^{2}-V_{r_{2}}{ }^{2} . \\
& u_{2} v_{w_{2}}=\frac{1}{2}\left[V_{2}{ }^{2}+u_{2}{ }^{2}-V_{r_{2}}{ }^{2}\right] \text {. } \tag{4}
\end{align*}
$$

$111^{1 / g}$ from inlet velocity $D^{\text {les }}$, we get.

$$
\begin{equation*}
u_{1} V_{w_{1}}=\frac{1}{2}\left[V_{1}^{2}+u_{1}^{2}-V_{r_{1}}^{2}\right] \tag{5}
\end{equation*}
$$

But Euler Turbine equation is.

$$
E=U_{1} V_{u_{1}}-U_{2} V_{u_{2}}
$$

Substituting (U) and (5) in above eqn,

$$
\begin{align*}
& E=\frac{1}{2}\left[V_{1}^{2}+U_{1}^{2}-V_{r_{1}}^{2}-V_{2}^{2}-U_{2}^{2}+V_{r_{2}}^{2}\right] . \\
& E=\frac{1}{2}\left[\left(V_{1}^{2}-V_{2}^{2}\right]+\left[U_{1}^{2}-U_{2}^{2}\right]+\left[V_{r_{2}}^{2}-V_{1}{ }^{2}\right]\right] \tag{6}
\end{align*}
$$

Eqn (6) is applicable for Power producing type.
For Power Absorbing Machines,

$$
\begin{equation*}
E=\frac{1}{2}\left[\left(V_{2}^{2}-V_{1}^{2}\right)+\left(U_{2}^{2}-U_{1}^{2}\right)+\left(V_{r_{1}}{ }^{2}-V_{r_{2}}^{2}\right)\right] \tag{7}
\end{equation*}
$$

Eqn (6) and (7) are different forms of Euler Turbine Equation.

The three terms inside the bracket of (6) and (7) indicates nature of energy transfer.
Significance of Each herm
(1) $\frac{1}{2}\left[V_{1}{ }^{2}-V_{2}{ }^{2}\right]$ represent the change in absolute kinetic energy of the fluid, during its passage. Hence, this term represents the change in dy namic head.
(2) $\frac{1}{2}\left[U_{1}^{2}-U_{2}^{2}\right]$ represent the change in fluid energy due to movement of rotation of fluid from one radius to another. ie., Centrifugal energy. Hence this herm represents the change in static head.
(3) $\frac{1}{2}\left[V_{r_{2}}{ }^{2}-V_{r_{1}}^{2}\right]$ represents kinetic energy change due to relative velocity change. This will result in chang in static head within the rotor.

2. Define utilization factor for a turbine and derive an expression for the same involving degree of reaction (10 Marks)
"The ratio of ideal' work to the energy supplied is culled diagram efficiency or utilization factor (ε).

The energy available to the rotor are:
i) Kinetic energy of the fluid at inlet $\left(1 / 2 v_{1}{ }^{2}\right)$.
ii) The static head available $\left[\frac{1}{2}\left[C U_{1}^{2}-U_{2}^{2}\right)+\left(V_{\gamma_{2}}{ }^{2}-V_{1}{ }^{2}\right)\right]$.

Hence Total energy available is,

$$
E_{\text {avail }}=\frac{1}{2}\left[V_{1}{ }^{2}+\left(U_{1}{ }^{2}-U_{2}{ }^{2}\right)+\left(V_{r_{2}}{ }^{2}-V_{r}{ }^{2}\right)\right] \text {. }
$$

The energy utilized by the turbine is given by Euler Lurbine eqn (or) the components of Euler turbine eqn.

$$
\begin{equation*}
\Rightarrow E_{\text {utilized }}=\frac{1}{2}\left[\left(V_{1}^{2}-V_{2}^{2}\right)+\left(U_{1}^{2}-U_{2}^{2}\right)+\left(V_{r_{2}^{2}}^{2}-V_{1}^{2}\right)\right] \text {. } \tag{2}
\end{equation*}
$$

Hence, by definition of ε,

$$
\begin{equation*}
\varepsilon=\frac{E_{\text {utilized }}}{E_{\text {avail }}}=\frac{1 / 2\left[\left(V_{1}{ }^{2}-V_{2}{ }^{2}\right)+\left(U_{1}{ }^{2}-U_{2}{ }^{2}\right)+\left(V_{r_{2}}{ }^{2}-V_{r_{1}}{ }^{2}\right)\right]}{1 / 2\left[V_{1}{ }^{2}+\left(U_{1}{ }^{2}-U_{2}{ }^{2}\right)+\left(V_{r_{2}}{ }^{2}-V_{r_{1}}{ }^{2}\right)\right]} \tag{3}
\end{equation*}
$$

0
Relationship between Ulilization factor and Degree of Reaction

$$
\begin{align*}
& \text { Relationship between } \\
& \text { Degree of Reaction }=R=\frac{\left(U_{1}^{2}-U_{2}^{2}\right)+\left(V_{r_{2}}^{2}-V_{r_{1}}^{2}\right)}{\left(V_{1}^{2}-V_{2}^{2}\right)+\left(U_{1}^{2}-U_{2}^{2}\right)+\left(V_{r_{2}}{ }^{2}-V_{r_{1}}{ }^{2}\right) .} \\
& \text { Let, }\left(U_{1}^{2}-U_{2}^{2}\right)+\left(V_{r_{2}}{ }^{2}-V_{r_{1}^{2}}^{2}\right)=S . \\
& \left(V_{1}^{2}-V_{2}^{2}\right)=D . \\
& \Rightarrow R=\frac{S}{D+S} \Rightarrow(D+S) R=S . \\
& \Rightarrow D R+S R=S . \Rightarrow D R=S-S R \Rightarrow D R=S(1-R) . \\
& \Rightarrow S=\frac{R}{1-R} D \tag{1}\\
& \Rightarrow\left(U_{1}^{2}-U_{2}^{2}\right)+\left(V_{r_{2}}{ }^{2}-V_{r_{1}}^{2}\right)=\frac{R}{1-R}\left(V_{1}^{2}-V_{2}^{2}\right) .
\end{align*}
$$

Utilization factor $=\varepsilon=\frac{\left(V_{1}^{2}-V_{2}{ }^{2}\right)+\left(U_{1}^{2}-U_{2}^{2}\right)+\left(U_{r_{2}}^{2}-V_{1}^{2}\right)}{V_{1}{ }^{2}+\left(U_{1}^{2}-U_{2}{ }^{2}\right)+\left(V_{r_{2}}{ }^{2}-V_{r_{1}}{ }^{2}\right)}$
Subsiliule (1) in (2)

$$
\Rightarrow \varepsilon=\frac{\left(V_{1}{ }^{2}-V_{2}^{2}\right)+\frac{R}{1-R}\left(V_{1}^{2}-V_{2}^{2}\right)}{V_{1}^{2}+\frac{R}{1-R}\left(V_{1}^{2}-V_{2}^{2}\right)}
$$

$$
\Rightarrow \varepsilon=(1-R)\left(V_{1}^{2}-V_{2}^{2}\right)+R\left(V_{1}^{2}-V_{2}^{2}\right)
$$

$$
(1-R) V_{1}^{2}+R\left(V_{1}^{2}-V_{2}^{2}\right)
$$

$$
=\frac{V_{1}^{2}-V_{2}^{2}-R V_{1}^{2}+R Y_{2}^{2}+R Y_{1}^{2}-R X_{2}^{2}}{V_{1}^{2}-R Y_{1}^{2}+R V_{1}^{2}-R V_{2}^{2}}
$$

$$
\varepsilon=\frac{V_{1}{ }^{2}-V_{2}{ }^{2}}{V_{1}{ }^{2}-R V_{2}{ }^{2}}
$$

3. Draw inlet and exit velocity triangles for a radial flow machine with i) Backward blade ii) Radial blade iii) Forward blade (5 marks)

1 MARK

2 MARKS
5. Performance of a turbomachine depends on the following variables, Discharge (Q), Speed (N), Rotor diameter (D), Energy per unit mass flow (gU), Power (P), Density (ρ), Dynamic viscosity (μ). Using dimensional analysis, obtain the π-terms. (Do not expalin the significance) (12 Marks)

SCHEME: EACH π-term carries 4 Marks each

Solution
General Relationship is.

$$
P(Q, N, D, g H, P, \rho, \mu)=\text { Constant. }
$$

No of Variables, $n=7$.
No of fundamental variables, $m=3$.

$$
\begin{aligned}
& \text { No of fundamental variables, } \\
& \text { No of } \pi \text {-terms }=(n-m)=7-3=4 \text {. }
\end{aligned}
$$

Dimensions

$$
\begin{aligned}
& \frac{\text { Dimensions }}{Q}=m^{3} / s=L^{3} T^{-1} \\
& N=\text { rpm }=1 / s=T^{-1} \\
& D=m=L \\
& g H=m^{2} / s^{2}=L^{2} T^{-2} \\
& \rho=J / s=M L^{2} T^{-3} \\
& \rho=\mathrm{kg} / \mathrm{m}^{3}=m L^{-3} \\
& \mu=N-s / m^{2}=M L^{-1} T^{-1}
\end{aligned}
$$

Repeating Variables
Geometric Property $\rightarrow D$
Flow property $\rightarrow \mathrm{N}$
Fluid Property $\rightarrow \rho$.
π - terms

$$
\begin{aligned}
& \pi_{1}=D^{a_{1}} N^{b_{1}} \rho^{c_{1}} Q \\
& \pi_{2}=D^{a_{2}} N^{b_{2}} g^{c_{2}} g H \\
& \pi_{3}=D^{a_{3}} N^{b_{3}} g^{c_{3}} P \\
& \pi_{4}=D^{a_{4}} N^{b_{4}} g^{c_{4}} \mu
\end{aligned}
$$

π_{1} - herm

$$
\begin{aligned}
& \pi_{1}=D^{a_{1}} N^{b_{1}} g^{c_{1}} Q . \\
& M^{0} L^{0} T^{0}=L^{a_{1}}\left(T^{-1}\right)^{b_{1}}\left(M L^{-3}\right)^{c_{1}}\left(L^{3} T^{-1}\right)
\end{aligned}
$$

Equating Powers of M.

$$
0=c_{1}
$$

Equating Powers of L,

$$
\begin{aligned}
& 0=a_{1}-3 c_{1}+3 \\
& 0=a_{1}+3 \\
& a_{1}=-3
\end{aligned}
$$

Equating Powers of T,
$0=-b,-1$

$$
b_{1}=-1
$$

$$
\therefore \pi_{1}=D^{-3} N^{-1} \rho^{0} Q .
$$

$$
\pi_{1}=\frac{Q}{N D^{3}}
$$

$$
\begin{aligned}
& \frac{\pi_{2}-\text { herm }}{} \\
& \pi_{2}=D^{a_{2}} N^{b_{2}} \rho^{c_{2}} \mathrm{gH}^{(H)} \\
& m^{0} L^{\circ} T^{0}=L^{a_{2}}\left(T^{-1}\right)^{b_{2}}\left(m L^{-3}\right)^{c_{2}} \\
& \quad\left(L^{2} T^{-2}\right) .
\end{aligned}
$$

Equaling Power' of M,

$$
0: c_{2}
$$

Equating Power of L,

$$
\begin{aligned}
0 & =a_{2}-3 c_{2}+2 . \\
& \Rightarrow a_{2}=-2
\end{aligned}
$$

Equating Powers of T,

$$
\begin{aligned}
& 0=-b_{2}-2 . \\
& \Rightarrow b_{2}=-2 \\
& \pi_{2}=D^{-2} N^{-2} \rho^{0} \mathrm{gH} \\
& \pi_{2}=\frac{g H}{D D^{2} N^{2}}
\end{aligned}
$$

π_{3}-herm

$$
\pi_{3}=D^{a_{3}} N^{b_{3}} g^{C_{3}} P .
$$

$$
M^{0} L^{0} T^{0}=L^{a_{3}}\left(T^{-1}\right)^{b_{3}}\left(M L^{-3}\right)^{c_{3}} M L^{2} T^{-3}
$$

Equating Power of m,

$$
0: c_{3}+1
$$

$$
\Rightarrow C_{3}=-1
$$

Equating Powers of L,

$$
\begin{aligned}
0 & =a_{3}-3 c_{3}+2 \\
& \Rightarrow a_{3}=-5
\end{aligned}
$$

Equating Powers of T,

$$
\begin{aligned}
& 0=-b_{3}-3 \\
& \Rightarrow b_{3}=-3 \\
& \pi_{3}=D^{-5} N^{-3} \rho^{-1} P \\
& \pi_{3}=\frac{P}{\rho N^{3} D^{5}}
\end{aligned}
$$

π_{4}-herm

$$
\begin{aligned}
& \pi_{4}=D^{a_{n}} N^{b_{u}} g^{c_{n}} \mu \\
& M^{0} L^{0} T^{0}=L^{a_{n}}\left(T^{-1}\right)^{b_{n}}\left(M L^{-3-3}\right)^{-n} \\
&\left(M L^{-1} T^{-1}\right] .
\end{aligned}
$$

Equating Powers of M,

$$
\begin{aligned}
& 0=c_{4}+1 \\
& \Rightarrow c_{4}=-1
\end{aligned}
$$

Equating Powers of T,

$$
\begin{aligned}
0 & =-b_{4}-1 \\
& \Rightarrow b_{4}=-1
\end{aligned}
$$

Equating Powers of l,

$$
\begin{aligned}
0 & =a_{4}-3 c_{4}-1 \\
& \Rightarrow a_{4}=-2
\end{aligned}
$$

$\pi_{n}=D^{-2} N^{-1} \rho^{-1} \mu$
$\pi_{n}=\frac{\mu}{\rho N D^{2}}$

PART- C (Answer any one)
6. In a certain turbo machine, the inlet whirl velocity is $15 \mathrm{~m} / \mathrm{s}$, inlet flow velocity is $10 \mathrm{~m} / \mathrm{s}$, blade speeds are $30 \mathrm{~m} / \mathrm{s}$ and $8 \mathrm{~m} / \mathrm{s}$ respectively. Discharge is radial with an absolute velocity of $15 \mathrm{~m} / \mathrm{s}$. If water is the working fluid, flowing at the rate of 1500 litres, calculate: i) Power in kW ii) the change in total pressure in bar iii) the degree of reaction and iv) Utilization factor. (10 Marks)

Data

$$
\begin{aligned}
& R=0.5 \\
& U=98.5 \mathrm{~m} / \mathrm{s} \\
& V_{1}=V_{\gamma_{2}}=155 \mathrm{~m} / \mathrm{s} \\
& \beta_{2}=\alpha_{1}=18^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& V_{w_{1}}=V_{1} \cos \alpha_{1}=155 \cos 18=147.4 \mathrm{~m} / \mathrm{s} \\
& V_{f_{1}}=V_{1} \sin \alpha_{1}=155 \sin 18=47.9 \mathrm{~m} / \mathrm{s} \\
& X=V_{w_{1}}-U=147.4-98.5=48.9 \mathrm{~m} / \mathrm{s}=V_{w_{2}} \\
& V_{r_{1}}=\sqrt{X^{2}+V_{f_{1}}^{2}}=68.45 \mathrm{~m} / \mathrm{s}=V_{2}
\end{aligned}
$$

$$
\beta_{1}=\tan ^{-1}\left[\frac{V_{6_{1}}}{x}\right]=44.4^{\circ}=\alpha_{2} .
$$

4 MARKS

$$
\begin{aligned}
\text { Power Output, } \begin{aligned}
P & =\dot{m} u\left(V_{w_{1}}+V_{w_{2}}\right) \\
& =10 \times 9.8 .5(147.4+48.9) \\
P & =19.3 .4 \mathrm{kw} \longrightarrow \text { 3 MARKS } \\
\varepsilon=\frac{E}{E+V_{\theta}^{2} / 2} & =\frac{19.34}{19.34+\left(\frac{68.45}{2}\right)}=0.892 .
\end{aligned} \\
\text { 2 MARKS }
\end{aligned}
$$

7. The velocity of fluid from the nozzle in an axial flow impulse turbine is $1200 \mathrm{~m} / \mathrm{s}$. The nozzle angle is 22°. If the rotor blades are equiangular and the rotor tangential blade speed is $400 \mathrm{~m} / \mathrm{s}$, find i) The rotor blade angles ii) The tangential force on the blade rings iii) Power Output iv) Utilization Factor. Assume $\mathrm{V}_{\mathrm{r} 1}=\mathrm{V}_{\mathrm{r} 2}$ (10 Marks)

Data: $V_{1}=1200 \mathrm{~m} / \mathrm{s}$

$$
\alpha_{1}=22^{\circ} \quad \beta_{1}=\beta_{2}
$$

$$
U=400 \mathrm{~m} / \mathrm{s} \quad V_{r_{1}}=V_{r_{2}}
$$

To find: $\quad \beta_{1}=\beta_{2}=?, \quad F_{T}=?, P=?, \varepsilon=$?

$$
\begin{aligned}
& \cos \alpha_{1}=\frac{V_{w_{1}}}{V_{1}} \Rightarrow \cos 22=\frac{V_{w_{1}}}{1200} \\
& V_{w_{1}}=1112.6 \mathrm{~m} / \mathrm{s} \\
& V_{1}^{2}=V_{p_{1}}^{2}+V_{w_{1}}^{2} \Rightarrow 1200^{2}=V_{p_{1}}^{2}+1112.6^{2} \\
& \Rightarrow V_{f_{1}}=449.53 \mathrm{~m} / \mathrm{s} \\
& \tan \beta_{1}=\frac{V_{p_{1}}}{V_{w_{1}}-u_{1}}=\frac{449.53}{1112.6-400} \\
& \Rightarrow \beta_{1}=32.24^{0}=\beta_{2} \\
& \cos \beta_{2}=\frac{u_{2}+V_{w_{2}}}{V_{r_{2}}} \equiv \cos 32.24=\frac{400+V_{w_{2}}}{842.6} \\
& \Rightarrow V_{w_{2}}=312.66 \mathrm{~m} / \mathrm{s} . \\
& F_{T}=\dot{m}\left(V_{w_{1}}+V_{w_{2}}\right) \\
&=1 \times(1112.6+312.66) \\
& F_{T}=1425.27 \mathrm{~N}
\end{aligned}
$$

Power Developed, $P=F_{T} \times U$

$$
\begin{aligned}
& =1425.27 \times 400 \\
& P=570.09 \mathrm{kw}
\end{aligned}
$$

Utilization Factor

$$
\begin{aligned}
\varepsilon & =\frac{V_{1}^{2}-V_{2}^{2}}{V_{1}^{2}} \\
V_{2}^{2} & =V_{r_{2}}^{2}+u^{2}-2 V_{r_{2}} u \cos \beta_{2} \\
& =842.6^{2}+400^{2}-2 \times 842.6 \times 400 \times \cos 3224 \\
V_{2} & =547.49 \mathrm{~m} / \mathrm{s} \\
\varepsilon & =0.79
\end{aligned}
$$

