
CMR
INSTITUTE OF
TECHNOLOGY

.

Internal Assesment Test - II
-SCHEME & SOLUTION

Sub: PROGRAMMING IN C AND DATA STRUCTURES Code: 15PCD13

Date: 03 / 11 / 2016 Duration: 90 mins Max Marks: 50 Sem: I Sections I/J/K/L/M/N/O

Answer Any FIVE FULL Questions

Marks

OBE

CO RBT

1(a) What is an array? Explain the declaration and initialization of single [05] CO1 L1
dimensional and two dimensional arrays.
ARRAY
• Array is a collection of elements of same data type.
• The elements are stored sequentially one after the other in
memory.
• Any element can be accessed by using
→ name of the array
→ position of element in the array
• Arrays are of 2 types:
1) Single dimensional array
2) Multi dimensional array

SINGLE DIMENSIONAL ARRAY
• A single dimensional array is a linear list consisting of
related elements of same type.
• In memory, all the elements are stored in continuous
memory-location one after the other.
Declaration of Single Dimensional Arrays
• The syntax is shown below:
data_type array_name[array_size]
where data_type can be int, float or char
array_name is name of the array
array_size indicates number of elements in the array
• For ex:
int age[5];
For ex:
int age[5]={2,4,34,3,4};

MULTI DIMENSIONAL ARRAYS
• Arrays with two or more dimensions are called multi
dimensional arrays.
• For ex:
int matrix[2][3];
int matrix[2][3]= {1, 23, 11, 44, 5, 6};

(b) Explain strings in C and any four string manipulation functions. [05] CO1 L1
STRINGS
• Array of character are called strings.
• A string is terminated by null character /0.
• For ex:
"c string tutorial"
• Strings are declared in C in similar manner as arrays.
Only difference is that, strings are of „char‟ type.
• For ex:
char s[5];

For ex:

char s[5]={'r', 'a', 'm', 'a' };
char s[9]="rama";

strlen()
• This function calculates the length of string. It takes only one argument,
i.e., string-name.
• The syntax is shown below:
temp_variable = strlen(string_name);

strcpy()
• This function copies the content of one string to the content of another
string. It takes 2 arguments.
• The syntax is shown below:
strcpy(destination,source);
where source and destination are both the name of the string.

strcat()
• This function joins 2 strings. It takes two arguments, i.e., 2 strings and
resultant string is stored in
the first string specified in the argument.
• The syntax is shown below:
strcat(first_string,second_string);

strcmp()
• This function compares 2 string and returns value 0, if the 2 strings are
equal. It takes 2 arguments,
i.e., name of two string to compare.
• The syntax is shown below:
temp_varaible=strcmp(string1,string2);
• Example: Program to illustrate the use of strcmp().

2(a) Write a C program using function void sort (int n, int a []) to arrange elements [10] CO4, L3
in ascending order. Use ‘bubble sort’ technique.

1. #include <stdio.h>
2.
3. void bubble_sort(long [], long);
4.
5. int main()
6. {
7. long array[100], n, c, d, swap;
8.
9. printf("Enter number of elements\n");
10. scanf("%ld", &n);
11.
12. printf("Enter %ld longegers\n", n);
13.
14. for (c = 0; c < n; c++)
15. scanf("%ld", &array[c]);
16.
17. bubble_sort(array, n);
18.
19. printf("Sorted list in ascending order:\n");
20. CO3

21. for (c = 0 ; c < n ; c++)
22. printf("%ld\n", array[c]);
23.
24. return 0;
25. }
26.
27. void bubble_sort(long list[], long n)
28. {
29. long c, d, t;
30.
31. for (c = 0 ; c < (n - 1); c++)
32. {
33. for (d = 0 ; d < n - c - 1; d++)
34. {
35. if (list[d] > list[d+1])
36. {
37. /* Swapping */
38.
39. t = list[d];
40. list[d] = list[d+1];
41. list[d+1] = t;
42. }
43. }
44. }
45. }

3(a) What is a function? Write a C program to find cube of a number using [10] CO4 L3
functions.

#include <stdio.h>

double cube(double num)
{

return (num * num * num);
}

int main()
{

int num;
double c;

printf("Enter any number: ");
scanf("%d", &num);

c = cube(num);

printf("Cube of %d is %.2f\n", num, c);

return 0;
}

4 (a) Explain call by value and call by reference parameter passing mechanism. [6] CO1 L1

ARGUMENT PASSING – CALL BY VALUE
• In this type, value of actual arguments are passed to the
formal arguments and the operation is done
on the formal arguments.
• Any changes made in the formal arguments does not effect
the actual arguments because formal
arguments are photocopy of actual arguments.
• Changes made in the formal arguments are local to the
block of called-function.
• Once control returns back to the calling-function the
changes made vanish.

CALL BY REFERENCE
When, argument is passed using pointer, address of the
memory-location is passed instead of value. So all the
changes are reflected outside the function definition. When
we will swap the value of the two variables, output will be
Variables with changed values.

(b) Program to swap 2 number using call by reference.

#include<stdio.h>
void swap(int *a,int *b)
{ // pointer a and b points to address of num1 and num2
respectively
int temp;
temp=*a;
*a=*b;
*b=temp;
}
void main()
{
int num1=5,num2=10;
swap(&num1, &num2); //address of num1 & num2 is passed
to swap function
printf("Number1 = %d \n",num1);
printf("Number2 = %d",num2);
}
Output:
Number1 = 10
Number2 = 5

[4] CO4 L3

5(a) Write a C program to evaluate the polynomial f(x) = a4x
4

+ a3x
3

+ a2x
2

+ a1x+ a0, [10] CO3 L3
for a given value of x and coefficients (a1, a2, a3, a4) using Horner’s method.

#include<stdio.h>
int main()
{
int order, i;
float a [15], x, sum;
// Input the order of polynomial.
printf ("\nEnter the order of polynomial: ");
scanf ("%d", &order);

// Input the coefficients starting from lowest order.
printf ("\nEnter %d co-efficients of polynomial, starting with lowest order
coefficient first:\n", (order+1));
for (i = 0 ; i <= order ; i++)
{
scanf ("%f", &a [i]);
}
// Input the value of x.
printf ("\nEnter the value of x: ");
scanf ("%f", &x);
// Check if the order of the polynomial is zero.
if (order == 0)
{
printf ("\nThe sum of polynomial f(%f): %f\n\n", x, a [0]);
return 0;
}
// Initialize sum to the highest order coefficient.
sum = a [order] * x;
// Compute sum using Horner's method.
for (i = order - 1 ; i > 0 ; i--)
{
sum = (sum + a [i]) * x;
}
// Add the constant a (a0) to the sum.
sum = sum + a [0];
// Display the sum of the given polynomial.
printf ("\nThe sum of polynomial f(%f): %f\n\n", x, sum);

return 0;
}

6(a)What is file? Explain the following functions with syntax and examples: [10] CO4 L3
i) fopen() ii)fprintf() iii) fscanf()

A file is defined as a collection of data stored on the secondary
device such as hard disk. An input file contains the same items
we might have typed in from the keyboard. An output file
contains the same information that might have been sent to the
screen as the output from our program.

To open a file for writing, we use the same procedure as given
in previous section. But, the file mode has to be changed from
“r” to “w”. Suppose, the file “input.txt” has to be opened for
writing. We can use the following instructions.

#include <stdio.h>

FILE *fp;
fp = fopen(“input.txt”, “w”);

fscanf: The function of fscanf and scanf are exactly same. Only
change is that scanf is used to get data input from keyboard,
whereas fscanf is used to get data from the file pointed to by fp.

Because input is read from the file, extra parameter file pointer
fp has to be passed as the parameter. Rest of the functionality of
fscanf remains same as scanf. The syntax of fscanf() is shown
below:

fscanf(fp, “format string”, list);

fprintf: The function of fprintf and printf are exactly same.
Only change is that printf is used to display the data onto the
video display unit, whereas fprintf is used to send the data to
the output file pointed to by fp. Since file is used, extra
parameter file pointer fp has to be passed as parameter. Rest of
the functionality of fprintf remains same as printf. The syntax
of fprintf() is shown below:

fprintf(fp, “format string”, list);

7(a) Explain the following i)Structure data type ii) Concept of array of structure [05] CO6 L1

A structure is defined as a collection of data of same/different data types. All
data items thus grouped are logically related and can be accessed using variables.
Thus, structure can also be defined as a group of variables of same or different
data types. The variables that are used to store the data are called members of the
structure or fields of the structure. In C, the structure is identified by the
keyword struct.

Struct student
{

Char name[20];
Int rollno;
Char grade[3];

}

As variables are declared before they are used in the function, the structures are
also should be declared before they are used. A structure can be declared using
three different ways as shown below:

1) Tagged Structures
2) Structure variable
3) Type Defined Structures

The structure definition with tag name is called tagged structure. The tag name is
the name of the structure. The syntax of tagged structure is shown below:

struct tag name
{

Type 1 member 1;
Type 2 member 2;

}

The syntax of structure definition and declaration using structure variables is

shown below:

struct tag name
{

Type 1 member 1;
Type 2 member 2;

} var1, var2;

The structure definition associated with keyword typedef is called type-defined
structure.

Typedef struct
{

Type 1 member 1;
Type 2 member 2;

} TYPE_ID;

typedef struct
{

char name[10];
int roll_number;
float average_marks;

} STUDENT;

ARRAY OF STRUCTURES:

Structure is used to store the information of One particular object but if we need
to store such N objects then Array of Structure is used where we declare object
of type array.

#include<stdio.h>

struct bookinfo
{

bname[20];
int pages;
int price;

} book[3]; variable of type array

int main()
{

int i;
for(i=0 ; i<3 ; i++)
{

printf(“enter name of book:”)
gets(book[i].bname);

printf(“enter number of pages”);
scanf(“%d”book[i].pages);

printf(“enter the price of book”);
scanf(“%f”,book[i].price);

printf(“------------------BOOK DETAILS---------------“);

for(i=0 ; i<3 ; i++)
{
printf(“name of the book:%s”,book[i].name);
printf(“no of the pages:%s”,book[i].pages);
printf(“price of book:%s”,book[i].price);
}
return 0;
}

(b) Write a C program that implements string copy operation STRCOPY (str1, str2) [05] CO5 L3
that copies a string str1 to another string str2 without using library functions.

#include<stdio.h>
// Function declaration for strcopy.
void strcopy (char str1 [], char str2 []);
int main()
{
char str1 [20], str2 [20];
// Input the string that you want to copy.
printf ("\nEnter string to copy: ");
gets (str1);
// Function call.
strcopy (str1 , str2);
// Display the contents of str1 and str2.
printf ("\n\nCopying success!!!!!\n");
printf ("\nThe first string is: ");
puts (str1);
printf ("\nThe second string is: ");
puts (str2);
// Function definition for strcopy.
void strcopy (char str1 [], char str2 [])
{
int i;
// Copying the contents of str1 to str2 until NULL is encountered.
i = 0;
while (str1 [i] != '\0')
{
str2 [i] = str1 [i];
i++;
}
// Append NULL character at the end of str2.

str2 [i] = '\0';
}

8(a) What is a Pointer? Write a C program to calculate the sum and standard [1+5] C05 L1,L3
deviation of five real numbers in an array using pointer.

POINTER
• A pointer is a variable which holds address of another
variable or a memory-location.
• For ex:
c=300;
pc=&c;
Here pc is a pointer; it can hold the address of variable c
& is called reference operator.

DECLARATION OF POINTER VARIABLE
• Dereference operator(*) are used for defining pointer-
variable.
• The syntax is shown below:
data_type *ptr_var_name;
• For ex:
int *a; // a as pointer variable of type int
float *c; // c as pointer variable of type float
• Steps to access data through pointers:
1) Declare a data-variable ex: int c;
2) Declare a pointer-variable ex: int *pc;
3) Initialize a pointer-variable ex: pc=&c;
4) Access data using pointer-variable ex: printf("%d",*pc);

#include<stdio.h>
#include<math.h>
int main()
{
int n, i;
double a [10], sum, mean, sd, total, var;
// Read the number of integers.
printf ("\nEnter the value of n: ");
scanf ("%d", &n);
// Read the integers.
printf ("\nEnter %d numbers: ", n);
for (i = 0; i < 5 ; i++)
{
scanf ("%lf", (a+i));
}
//Compute sum.
sum = 0;
for (i = 0 ; i < n ; i++)
{
sum = sum + *(a+i);
}
printf ("\nThe Sum is: %lf\n", sum);
// Compute mean.
mean = sum / n;
printf ("\nThe Mean is: %lf\n", mean);
// Compute variance and standard deviation.
total= 0;
for (i = 0; i < 5 ; i++)
{

total = total + pow ((*(a+i)-mean), 2);
}
var = total / n;
sd = sqrt (var);
printf ("\nThe Standard Deviation is: %lf\n\n", sd);
return 0;
}

(b) What do you mean by dynamic memory allocation? Explain malloc () and [1+3] CO5 L1,L2
calloc () functions with syntax and examples.

Dynamic Memory Allocation
• Dynamic memory allocation is the process of allocating
memory-space during execution-time
i.e. run time.
• If there is an unpredictable storage requirement, then the
dynamic allocation technique is
used.
• This allocation technique uses predefined functions to allocate
and release memory for data
during execution-time.
• There are 4 library functions for dynamic memory allocation:
1) malloc()
2) calloc()
3) free()
4) realloc()

MALLOC():
• The name malloc stands for "memory allocation".
• This function is used to allocate the requirement memory-
space during execution-time.
• The syntax is shown below:
data_type *p;
p=(data_type*)malloc(size);
here p is pointer variable
data_type can be int, float or char
size is number of bytes to be allocated.

#include <stdio.h>
#include <stdlib.h>
void main()
{
int n, i, *ptr, sum=0;
printf("Enter number of elements: ");
scanf("%d",&n);
ptr=(int*)malloc(n*sizeof(int)); //memory allocated using
malloc
printf("Enter elements of array: ");
for(i=0;i<n;++i)
{
scanf("%d ",ptr+i);
sum+=*(ptr+i);
}
printf("Sum=%d",sum);

free(ptr);
}

CALLOC():

• The name calloc stands for "contiguous allocation".
• This function is used to allocate the required memory-size
during execution-time and at the same
time, automatically initialize memory with 0's.
• The syntax is shown below:
data_type *p;
p=(data_type*)calloc(n,size);
• If memory is successfully allocated, then address of the first
byte of allocated space is returned.
If memory allocation fails, then NULL is returned.
• The allocated memory is initialized automatically to 0's.
• For ex:
ptr=(int*)calloc(25,sizeof(int));

#include <stdio.h>
#include <stdlib.h>
void main()
{
int n,i,*ptr,sum=0;
printf("Enter number of elements: ");
scanf("%d",&n);
ptr=(int*)calloc(n,sizeof(int));
printf("Enter elements of array: ");
for(i=0;i<n;++i)
{
scanf("%d ",ptr+i);
sum+=*(ptr+i);
}
printf("Sum=%d",sum);
free(ptr);
}

Page 1 of 2

Course Outcomes P
O

1

P
O

2

P
O

3

P
O

4

P
O

5

P
O

6

P
O

7

P
O

8

P
O

9

P
O

10

P
O

11
P

O
1

2

CO1: Identify variable and their data types for a
given problem 1 0 0 0 0 1 0 0 0 0 0 0

CO2: Use operators to form a computational step. 1 0 0 0 0 1 0 0 0 0 0 0

CO3:
Use Control statement to solve simple
algorithms - sort, search. 1 1 1 1 0 1 0 0 0 0 0 0

CO4: Write functions that solve a given problem. 1 1 0 1 1 1 0 0 0 0 0 0

CO5: Explain dynamic memory allocation using
an example - Array of strings 1 1 0 0 0 1 0 0 0 0 0 0
Explain basic data structures used for

CO6: Programming - Arrays, List, Stack, Queue,
Trees. 1 0 0 0 1 1 0 0 0 0 0 0

Cognitive level KEYWORDS

L1 List, define, tell, describe, identify, show, label, collect, examine, tabulate, quote, name, who, when, where, etc.

L2 summarize, describe, interpret, contrast, predict, associate, distinguish, estimate, differentiate, discuss, extend

L3 Apply, demonstrate, calculate, complete, illustrate, show, solve, examine, modify, relate, change, classify,
experiment, discover.

L4 Analyze, separate, order, explain, connect, classify, arrange, divide, compare, select, explain, infer.

L5
Assess, decide, rank, grade, test, measure, recommend, convince, select, judge, explain, discriminate, support,
conclude, compare, summarize.

PO1 - Engineering knowledge; PO2 - Problem analysis; PO3 - Design/development of solutions;
PO4 - Conduct investigations of complex problems; PO5 - Modern tool usage; PO6 - The Engineer and society; PO7-
Environment and sustainability; PO8 – Ethics; PO9 - Individual and team work;
PO10 - Communication; PO11 - Project management and finance; PO12 - Life-long learning

Page 2 of 2

