
[Type text]

Improvement Test

Sub: PROGRAMMING IN C AND DATA STRUCTURES Code:

15PCD23

Date: 30 / 05 / 2017 Duration: 90 mins Max Marks: 50 Sem: II Branch: B,D Sec

Answer Any FIVE FULL Questions

 Marks
OBE

CO RBT

1(a) What are the rules for writing an identifier in C?

Rules for an Identifier

1. An Indetifier can only have alphanumeric characters(a-z , A-Z , 0-9) and underscore(_).
2. The first character of an identifier can only contain alphabet(a-z , A-Z) or underscore (_).
3. Identifiers are also case sensitive in C. For example name and Name are two different identifier in C.
4. Keywords are not allowed to be used as Identifiers.
5. No special characters, such as semicolon, period, whitespaces, slash or comma are permitted to be used in or as

Identifier.

[04] CO1 L1

1(b) List any six constant literals in C with examples.

Constants refer to fixed values that the program may not alter during its execution. These fixed values are also called
literals.

Constants can be of any of the basic data types like an integer constant, a floating constant, a character constant, or a
string literal. There are enumeration constants as well.

Constants are treated just like regular variables except that their values cannot be modified after their definition.

Integer Literals

An integer literal can be a decimal, octal, or hexadecimal constant. A prefix specifies the base or radix: 0x or 0X for
hexadecimal, 0 for octal, and nothing for decimal.

[06] CO1 L1

[Type text]

An integer literal can also have a suffix that is a combination of U and L, for unsigned and long, respectively. The suffix
can be uppercase or lowercase and can be in any order.

Here are some examples of integer literals −

212 /* Legal */
215u /* Legal */
0xFeeL /* Legal */
078 /* Illegal: 8 is not an octal digit */
032UU /* Illegal: cannot repeat a suffix */

Following are other examples of various types of integer literals −

85 /* decimal */
0213 /* octal */
0x4b /* hexadecimal */
30 /* int */
30u /* unsigned int */
30l /* long */
30ul /* unsigned long */

Floating-point Literals

A floating-point literal has an integer part, a decimal point, a fractional part, and an exponent part. You can represent
floating point literals either in decimal form or exponential form.

While representing decimal form, you must include the decimal point, the exponent, or both; and while representing
exponential form, you must include the integer part, the fractional part, or both. The signed exponent is introduced by e or
E.

Here are some examples of floating-point literals −

3.14159 /* Legal */
314159E-5L /* Legal */
510E /* Illegal: incomplete exponent */
210f /* Illegal: no decimal or exponent */
.e55 /* Illegal: missing integer or fraction */

Character Constants

[Type text]

Character literals are enclosed in single quotes, e.g., 'x' can be stored in a simple variable of char type.

A character literal can be a plain character (e.g., 'x'), an escape sequence (e.g., '\t'), or a universal character (e.g., '\u02C0').

There are certain characters in C that represent special meaning when preceded by a backslash for example, newline (\n)
or tab (\t).

Here, you have a list of such escape sequence codes −

Following is the example to show a few escape sequence characters −

#include <stdio.h>

int main() {

 printf("Hello\tWorld\n\n");

 return 0;
}

When the above code is compiled and executed, it produces the following result −

Hello World

String Literals

String literals or constants are enclosed in double quotes "". A string contains characters that are similar to character
literals: plain characters, escape sequences, and universal characters.

You can break a long line into multiple lines using string literals and separating them using white spaces.

Here are some examples of string literals. All the three forms are identical strings.

[Type text]

"hello, dear"

"hello, \

dear"

"hello, " "d" "ear"

Defining Constants

There are two simple ways in C to define constants −

 Using #define preprocessor.
 Using const keyword.

The #define Preprocessor

Given below is the form to use #define preprocessor to define a constant −

#define identifier value

The following example explains it in detail −

#include <stdio.h>

#define LENGTH 10
#define WIDTH 5
#define NEWLINE '\n'

int main() {

 int area;

 area = LENGTH * WIDTH;
 printf("value of area : %d", area);
 printf("%c", NEWLINE);

 return 0;
}

[Type text]

When the above code is compiled and executed, it produces the following result −

value of area : 50

The const Keyword

You can use const prefix to declare constants with a specific type as follows −

const type variable = value;

The following example explains it in detail −

#include <stdio.h>

int main() {

 const int LENGTH = 10;
 const int WIDTH = 5;
 const char NEWLINE = '\n';
 int area;

 area = LENGTH * WIDTH;
 printf("value of area : %d", area);
 printf("%c", NEWLINE);

 return 0;
}

When the above code is compiled and executed, it produces the following result –

value of area : 50

Note that it is a good programming practice to define constants in CAPITALS.

2(a) Describe relational, logical and bitwise operators with example (it must include the number of operands, operand type and return

value).
[06] CO1 L2

[Type text]

Relational Operators

The following table shows all the relational operators supported by C. Assume variable A holds 10 and variable B holds
20 then

Operator Description Example

==
Checks if the values of two operands are equal or
not. If yes, then the condition becomes true.

(A == B) is not true.

!=
Checks if the values of two operands are equal or
not. If the values are not equal, then the condition
becomes true.

(A != B) is true.

>
Checks if the value of left operand is greater than
the value of right operand. If yes, then the
condition becomes true.

(A > B) is not true.

<
Checks if the value of left operand is less than the
value of right operand. If yes, then the condition
becomes true.

(A < B) is true.

>=
Checks if the value of left operand is greater than
or equal to the value of right operand. If yes, then
the condition becomes true.

(A >= B) is not true.

<=
Checks if the value of left operand is less than or
equal to the value of right operand. If yes, then
the condition becomes true.

True is numeric 1 and false is numeric 0.

Logical Operators

Following table shows all the logical operators supported by C language. Assume variable A holds 1 and variable B holds
0, then −

[Type text]

Operator Description Example

&&
Called Logical AND operator. If both the operands
are non-zero, then the condition becomes true.

(A && B) is false.

||
Called Logical OR Operator. If any of the two
operands is non-zero, then the condition becomes
true.

(A || B) is true.

!
Called Logical NOT Operator. It is used to reverse
the logical state of its operand. If a condition is
true, then Logical NOT operator will make it false.

!(A && B) is true.

Bitwise Operators

Bitwise operator works on bits and perform bit-by-bit operation. The truth tables for &, |, and ^ is as follows −

p q p & q p | q p ^ q

0 0 0 0 0

0 1 0 1 1

1 1 1 1 0

1 0 0 1 1

Assume A = 60 and B = 13 in binary format, they will be as follows −

A = 0011 1100

B = 0000 1101

A&B = 0000 1100

A|B = 0011 1101

[Type text]

A^B = 0011 0001

~A = 1100 0011

The following table lists the bitwise operators supported by C. Assume variable 'A' holds 60 and variable 'B' holds 13,
then −

Operator Description Example

&
Binary AND Operator copies a
bit to the result if it exists in
both operands.

(A & B) = 12, i.e., 0000 1100

|
Binary OR Operator copies a
bit if it exists in either operand.

(A | B) = 61, i.e., 0011 1101

^
Binary XOR Operator copies
the bit if it is set in one operand
but not both.

(A ^ B) = 49, i.e., 0011 0001

~
Binary Ones Complement
Operator is unary and has the
effect of 'flipping' bits.

(~A) = -61, i.e,. 1100 0011 in 2's complement form.

<<

Binary Left Shift Operator. The
left operands value is moved
left by the number of bits
specified by the right operand.

A << 2 = 240 i.e., 1111 0000

>>

Binary Right Shift Operator.
The left operands value is
moved right by the number of
bits specified by the right
operand.

A >> 2 = 15 i.e., 0000 1111

2(b) Describe printf() and scanf() with proper syntax and example. [04] CO1 L2

[Type text]

Description

The C library function int printf(const char *format, ...) sends formatted output to stdout.

Declaration

Following is the declaration for printf() function.

int printf(const char *format, ...)

Parameters

 format − This is the string that contains the text to be written to stdout. It can optionally contain embedded format
tags that are replaced by the values specified in subsequent additional arguments and formatted as requested.
Format tags prototype is %[flags][width][.precision][length]specifier, which is explained below −

specifier Output

c Character

d or i Signed decimal integer

e Scientific notation (mantissa/exponent) using e character

E Scientific notation (mantissa/exponent) using E character

f Decimal floating point

g Uses the shorter of %e or %f

G Uses the shorter of %E or %f

o Signed octal

s String of characters

u Unsigned decimal integer

x Unsigned hexadecimal integer

X Unsigned hexadecimal integer (capital letters)

p Pointer address

[Type text]

n Nothing printed

% Character

flags Description

-
Left-justify within the given field width; Right justification is the default (see width
sub-specifier).

+
Forces to precede the result with a plus or minus sign (+ or -) even for positive
numbers. By default, only negative numbers are preceded with a -ve sign.

(space) If no sign is going to be written, a blank space is inserted before the value.

Used with o, x or X specifiers the value is preceded with 0, 0x or 0X respectively for
values different than zero. Used with e, E and f, it forces the written output to contain
a decimal point even if no digits would follow. By default, if no digits follow, no
decimal point is written. Used with g or G the result is the same as with e or E but
trailing zeros are not removed.

0
Left-pads the number with zeroes (0) instead of spaces, where padding is specified
(see width sub-specifier).

width Description

(number)
Minimum number of characters to be printed. If the value to be printed is shorter than
this number, the result is padded with blank spaces. The value is not truncated even if
the result is larger.

*
The width is not specified in the format string, but as an additional integer value
argument preceding the argument that has to be formatted.

Return Value

If successful, the total number of characters written is returned. On failure, a negative number is returned.

[Type text]

Example

The following example shows the usage of printf() function.

#include <stdio.h>

int main ()
{
 int ch;

 for(ch = 75 ; ch <= 100; ch++)
 {
 printf("ASCII value = %d, Character = %c\n", ch , ch);
 }

 return(0);
}

Let us compile and run the above program to produce the following result −

ASCII value = 75, Character = K
ASCII value = 76, Character = L
ASCII value = 77, Character = M
ASCII value = 78, Character = N
ASCII value = 79, Character = O
ASCII value = 80, Character = P
ASCII value = 81, Character = Q
ASCII value = 82, Character = R
ASCII value = 83, Character = S
ASCII value = 84, Character = T
ASCII value = 85, Character = U
ASCII value = 86, Character = V
ASCII value = 87, Character = W
ASCII value = 88, Character = X
ASCII value = 89, Character = Y
ASCII value = 90, Character = Z
ASCII value = 91, Character = [
ASCII value = 92, Character = \
ASCII value = 93, Character =]
ASCII value = 94, Character = ^

[Type text]

ASCII value = 95, Character = _
ASCII value = 96, Character = `
ASCII value = 97, Character = a
ASCII value = 98, Character = b
ASCII value = 99, Character = c
ASCII value = 100, Character = d

Description

The C library function int fscanf(FILE *stream, const char *format, ...) reads formatted input from a stream.

Declaration

Following is the declaration for fscanf() function.

int fscanf(FILE *stream, const char *format, ...)

Parameters

 stream − This is the pointer to a FILE object that identifies the stream.
 format − This is the C string that contains one or more of the following items − Whitespace character, Non-

whitespace character and Format specifiers. A format specifier will be as [=%[*][width][modifiers]type=],
which is explained below −

argument Description

*
This is an optional starting asterisk indicates that the data is to be read from
the stream but ignored, i.e. it is not stored in the corresponding argument.

width
This specifies the maximum number of characters to be read in the current
reading operation.

modifiers

Specifies a size different from int (in the case of d, i and n), unsigned int (in
the case of o, u and x) or float (in the case of e, f and g) for the data pointed
by the corresponding additional argument: h : short int (for d, i and n), or
unsigned short int (for o, u and x) l : long int (for d, i and n), or unsigned
long int (for o, u and x), or double (for e, f and g) L : long double (for e, f

[Type text]

and g)

type
A character specifying the type of data to be read and how it is expected to
be read. See next table.

fscanf type specifiers

type Qualifying Input
Type of

argument

c

Single character: Reads the next character. If a width different from 1 is
specified, the function reads width characters and stores them in the
successive locations of the array passed as argument. No null character is
appended at the end.

char *

d Decimal integer: Number optionally preceded with a + or - sign int *

e, E, f,
g, G

Floating point: Decimal number containing a decimal point, optionally
preceded by a + or - sign and optionally followed by the e or E character
and a decimal number. Two examples of valid entries are -732.103 and
7.12e4

float *

o Octal Integer: int *

s
String of characters. This will read subsequent characters until a
whitespace is found (whitespace characters are considered to be blank,
newline and tab).

char *

u Unsigned decimal integer.
unsigned int
*

x, X Hexadecimal Integer int *

 additional arguments -- Depending on the format string, the function may expect a sequence of additional
arguments, each containing one value to be inserted instead of each %-tag specified in the format parameter (if
any). There should be the same number of these arguments as the number of %-tags that expect a value.

Return Value

This function returns the number of input items successfully matched and assigned, which can be fewer than provided for,
or even zero in the event of an early matching failure.

[Type text]

Example

The following example shows the usage of fscanf() function.

#include <stdio.h>
#include <stdlib.h>

int main()
{
 char str1[10], str2[10], str3[10];
 int year;
 FILE * fp;

 fp = fopen ("file.txt", "w+");
 fputs("We are in 2012", fp);

 rewind(fp);
 fscanf(fp, "%s %s %s %d", str1, str2, str3, &year);

 printf("Read String1 |%s|\n", str1);
 printf("Read String2 |%s|\n", str2);
 printf("Read String3 |%s|\n", str3);
 printf("Read Integer |%d|\n", year);

 fclose(fp);

 return(0);
}

Let us compile and run the above program that will produce the following result:

Read String1 |We|
Read String2 |are|
Read String3 |in|
Read Integer |2012|

[Type text]

3(a) Describe typecast, sizeof operators with example. What is sizeof(void)?

Type casting is a way to convert a variable from one data type to another data type. For example, if you want to store a
'long' value into a simple integer then you can type cast 'long' to 'int'. You can convert the values from one type to another
explicitly using the cast operator as follows −

(type_name) expression

Consider the following example where the cast operator causes the division of one integer variable by another to be
performed as a floating-point operation −

#include <stdio.h>

main() {

 int sum = 17, count = 5;
 double mean;

 mean = (double) sum / count;
 printf("Value of mean : %f\n", mean);

}

When the above code is compiled and executed, it produces the following result −

Value of mean : 3.400000

It should be noted here that the cast operator has precedence over division, so the value of sum is first converted to type
double and finally it gets divided by count yielding a double value.

Type conversions can be implicit which is performed by the compiler automatically, or it can be specified explicitly
through the use of the cast operator. It is considered good programming practice to use the cast operator whenever type
conversions are necessary.

[05] CO1 L2

[Type text]

Integer Promotion

Integer promotion is the process by which values of integer type "smaller" than int or unsigned int are converted either to
int or unsigned int. Consider an example of adding a character with an integer −

#include <stdio.h>

main() {

 int i = 17;
 char c = 'c'; /* ascii value is 99 */
 int sum;

 sum = i + c;
 printf("Value of sum : %d\n", sum);

}

When the above code is compiled and executed, it produces the following result −

Value of sum : 116

Here, the value of sum is 116 because the compiler is doing integer promotion and converting the value of 'c' to ASCII
before performing the actual addition operation.

Usual Arithmetic Conversion

The usual arithmetic conversions are implicitly performed to cast their values to a common type. The compiler first
performs integer promotion; if the operands still have different types, then they are converted to the type that appears
highest in the following hierarchy −

[Type text]

Operator Description Example

sizeof() Returns the size of a variable. sizeof(a), where a is interger, will return 4.

& Returns the address of a variable. &a; returns the actual address of the variable.

* Pointer to a variable. *a;

? : Conditional Expression
If Condition is true ? then value X : otherwise value
Y

[Type text]

Example

Try following example to understand all the miscellaneous operators available in C −

#include <stdio.h>

main() {

 int a = 4;
 short b;
 double c;
 int* ptr;

 /* example of sizeof operator */
 printf("Line 1 - Size of variable a = %d\n", sizeof(a));
 printf("Line 2 - Size of variable b = %d\n", sizeof(b));
 printf("Line 3 - Size of variable c= %d\n", sizeof(c));

 /* example of & and * operators */
 ptr = &a; /* 'ptr' now contains the address of 'a'*/
 printf("value of a is %d\n", a);
 printf("*ptr is %d.\n", *ptr);

 /* example of ternary operator */
 a = 10;
 b = (a == 1) ? 20: 30;
 printf("Value of b is %d\n", b);

 b = (a == 10) ? 20: 30;
 printf("Value of b is %d\n", b);
}

When you compile and execute the above program, it produces the following result −

Line 1 - Size of variable a = 4
Line 2 - Size of variable b = 2
Line 3 - Size of variable c= 8
value of a is 4
*ptr is 4.

[Type text]

Value of b is 30
Value of b is 20

The usual arithmetic conversions are not performed for the assignment operators, nor for the logical operators && and ||.
Let us take the following example to understand the concept

#include <stdio.h>

main() {

 int i = 17;
 char c = 'c'; /* ascii value is 99 */
 float sum;

 sum = i + c;
 printf("Value of sum : %f\n", sum);

}

When the above code is compiled and executed, it produces the following result −

Value of sum : 116.000000

Here, it is simple to understand that first c gets converted to integer, but as the final value is double, usual arithmetic
conversion applies and the compiler converts i and c into 'float' and adds them yielding a 'float' result.

3(b) Write a C program to calculate the area of a rectangle. The sides of the rectangle must be taken as input.

#include<stdio.h>
#include<conio.h>
int main()
{
 int length, breadth, area;

[05] CO3 L3

[Type text]

 printf("\nEnter the Length of Rectangle : ");
 scanf("%d", &length);
 printf("\nEnter the Breadth of Rectangle : ");
 scanf("%d", &breadth);
 area = length * breadth;
 printf("\nArea of Rectangle : %d", area);
 return (0);
}

4(a)

Describe how to declare and initialize a structure element with example.

Structure variable declaration

When a structure is defined, it creates a user-defined type but, no storage or memory is allocated.

For the above structure of a person, variable can be declared as:

struct person
{
 char name[50];
 int citNo;
 float salary;
};

int main()
{
 struct person person1, person2, person3[20];
 return 0;
}

Another way of creating a structure variable is:

struct person
{
 char name[50];
 int citNo;

[04]

CO1 L2

[Type text]

 float salary;
} person1, person2, person3[20];

In both cases, two variables person1, person2 and an array person3 having 20 elements of type struct person are created.

Accessing members of a structure

There are two types of operators used for accessing members of a structure.

1. Member operator(.)
2. Structure pointer operator(->) (is discussed in structure and pointers tutorial)

Any member of a structure can be accessed as:

structure_variable_name.member_name

Suppose, we want to access salary for variable person2. Then, it can be accessed as:

person2.salary

Example of structure

Write a C program to add two distances entered by user. Measurement of distance should be in inch and feet. (Note:
12 inches = 1 foot)

#include <stdio.h>
struct Distance
{
 int feet;
 float inch;
} dist1, dist2, sum;

int main()
{
 printf("1st distance\n");

 // Input of feet for structure variable dist1
 printf("Enter feet: ");
 scanf("%d", &dist1.feet);

[Type text]

 // Input of inch for structure variable dist1
 printf("Enter inch: ");
 scanf("%f", &dist1.inch);

 printf("2nd distance\n");

 // Input of feet for structure variable dist2
 printf("Enter feet: ");
 scanf("%d", &dist2.feet);

 // Input of feet for structure variable dist2
 printf("Enter inch: ");
 scanf("%f", &dist2.inch);

 sum.feet = dist1.feet + dist2.feet;
 sum.inch = dist1.inch + dist2.inch;

 if (sum.inch > 12)
 {
 //If inch is greater than 12, changing it to feet.
 ++sum.feet;
 sum.inch = sum.inch - 12;
 }

 // printing sum of distance dist1 and dist2
 printf("Sum of distances = %d\'-%.1f\"", sum.feet, sum.inch);
 return 0;
}

Output

1st distance
Enter feet: 12
Enter inch: 7.9
2nd distance
Enter feet: 2
Enter inch: 9.8
Sum of distances = 15'-5.7"

[Type text]

 4(b) Describe structure pointer with example. Describe with example how to pass address of a structure.

Pointers to Structures

You can define pointers to structures in the same way as you define pointer to any other variable −

struct Books *struct_pointer;

Now, you can store the address of a structure variable in the above defined pointer variable. To find the address of a structure
variable, place the '&'; operator before the structure's name as follows −

struct_pointer = &Book1;

To access the members of a structure using a pointer to that structure, you must use the → operator as follows −

struct_pointer->title;

Let us re-write the above example using structure pointer.

#include <stdio.h>
#include <string.h>

struct Books {
 char title[50];
 char author[50];
 char subject[100];
 int book_id;
};

/* function declaration */
void printBook(struct Books *book);
int main() {

 struct Books Book1; /* Declare Book1 of type Book */
 struct Books Book2; /* Declare Book2 of type Book */

 /* book 1 specification */
 strcpy(Book1.title, "C Programming");
 strcpy(Book1.author, "Nuha Ali");

[06] CO2,
CO3

L3

[Type text]

 strcpy(Book1.subject, "C Programming Tutorial");
 Book1.book_id = 6495407;

 /* book 2 specification */
 strcpy(Book2.title, "Telecom Billing");
 strcpy(Book2.author, "Zara Ali");
 strcpy(Book2.subject, "Telecom Billing Tutorial");
 Book2.book_id = 6495700;

 /* print Book1 info by passing address of Book1 */
 printBook(&Book1);

 /* print Book2 info by passing address of Book2 */
 printBook(&Book2);

 return 0;
}

void printBook(struct Books *book) {

 printf("Book title : %s\n", book->title);
 printf("Book author : %s\n", book->author);
 printf("Book subject : %s\n", book->subject);
 printf("Book book_id : %d\n", book->book_id);
}

When the above code is compiled and executed, it produces the following result −

Book title : C Programming
Book author : Nuha Ali
Book subject : C Programming Tutorial
Book book_id : 6495407
Book title : Telecom Billing
Book author : Zara Ali
Book subject : Telecom Billing Tutorial
Book book_id : 6495700

[Type text]

5(a) Describe fopen(… , …) with the following different modes: r, w, a (Please mention what will happen in case the file does not exist).

fopen
FILE * fopen (const char * filename, const char * mode);

Opens the file whose name is specified in the parameter filename and associates it with a stream that can be identified in
future operations by the FILE pointer returned.

The operations that are allowed on the stream and how these are performed are defined by the mode parameter.

The returned stream is fully buffered by default if it is known to not refer to an interactive device (see setbuf).

The returned pointer can be disassociated from the file by calling fclose or freopen. All opened files are automatically closed
on normal program termination.

The running environment supports at least FOPEN_MAX files open simultaneously.

Parameters
filename

C string containing the name of the file to be opened.
Its value shall follow the file name specifications of the running environment and can include a path (if supported by
the system).

mode
C string containing a file access mode. It can be:

"r" read: Open file for input operations. The file must exist.

"w"
write: Create an empty file for output operations. If a file with the same name already
exists, its contents are discarded and the file is treated as a new empty file.

"a"
append: Open file for output at the end of a file. Output operations always write data
at the end of the file, expanding it. Repositioning operations (fseek, fsetpos, rewind)
are ignored. The file is created if it does not exist.

[06] CO1 L2

[Type text]

"r+" read/update: Open a file for update (both for input and output). The file must exist.

"w+"
write/update: Create an empty file and open it for update (both for input and output).
If a file with the same name already exists its contents are discarded and the file is
treated as a new empty file.

"a+"

append/update: Open a file for update (both for input and output) with all output
operations writing data at the end of the file. Repositioning operations (fseek, fsetpos,
rewind) affects the next input operations, but output operations move the position back
to the end of file. The file is created if it does not exist.

With the mode specifiers above the file is open as a text file. In order to open a file as a binary file, a "b" character has
to be included in the mode string. This additional "b" character can either be appended at the end of the string (thus
making the following compound modes: "rb", "wb", "ab", "r+b", "w+b", "a+b") or be inserted between the letter and
the "+" sign for the mixed modes ("rb+", "wb+", "ab+").

The new C standard (C2011, which is not part of C++) adds a new standard subspecifier ("x"), that can be appended
to any "w" specifier (to form "wx", "wbx", "w+x" or "w+bx"/"wb+x"). This subspecifier forces the function to fail if
the file exists, instead of overwriting it.

If additional characters follow the sequence, the behavior depends on the library implementation: some
implementations may ignore additional characters so that for example an additional "t" (sometimes used to explicitly
state a text file) is accepted.

On some library implementations, opening or creating a text file with update mode may treat the stream instead as a
binary file.

Text files are files containing sequences of lines of text. Depending on the environment where the application runs, some
special character conversion may occur in input/output operations in text mode to adapt them to a system-specific text file
format. Although on some environments no conversions occur and both text files and binary files are treated the same way,
using the appropriate mode improves portability.

For files open for update (those which include a "+" sign), on which both input and output operations are allowed, the stream
shall be flushed (fflush) or repositioned (fseek, fsetpos, rewind) before a reading operation that follows a writing operation.
The stream shall be repositioned (fseek, fsetpos, rewind) before a writing operation that follows a reading operation
(whenever that operation did not reach the end-of-file).

[Type text]

Return Value
If the file is successfully opened, the function returns a pointer to a FILE object that can be used to identify the stream on
future operations.
Otherwise, a null pointer is returned.
On most library implementations, the errno variable is also set to a system-specific error code on failure.

Example
1
2
3
4
5
6
7
8
9
10
11
12
13

/* fopen example */
#include <stdio.h>
int main ()
{
 FILE * pFile;
 pFile = fopen ("myfile.txt","w");
 if (pFile!=NULL)
 {
 fputs ("fopen example",pFile);
 fclose (pFile);
 }
 return 0;
}

5(b) Describe any two file input functios with proper syntax, arguments and return value.

fscanf
int fscanf (FILE * stream, const char * format, ...);

Read formatted data from stream
Reads data from the stream and stores them according to the parameter format into the locations pointed by the additional
arguments.

The additional arguments should point to already allocated objects of the type specified by their corresponding format
specifier within the format string.

[04] CO1 L2

[Type text]

Parameters
stream

Pointer to a FILE object that identifies the input stream to read data from.
format

C string that contains a sequence of characters that control how characters extracted from the stream are treated:

 Whitespace character: the function will read and ignore any whitespace characters encountered before the
next non-whitespace character (whitespace characters include spaces, newline and tab characters -- see
isspace). A single whitespace in the format string validates any quantity of whitespace characters extracted
from the stream (including none).

 Non-whitespace character, except format specifier (%): Any character that is not either a whitespace
character (blank, newline or tab) or part of a format specifier (which begin with a % character) causes the
function to read the next character from the stream, compare it to this non-whitespace character and if it
matches, it is discarded and the function continues with the next character of format. If the character does not
match, the function fails, returning and leaving subsequent characters of the stream unread.

 Format specifiers: A sequence formed by an initial percentage sign (%) indicates a format specifier, which is
used to specify the type and format of the data to be retrieved from the stream and stored into the locations
pointed by the additional arguments.

A format specifier for fscanf follows this prototype:

%[*][width][length]specifier

Where the specifier character at the end is the most significant component, since it defines which characters are
extracted, their interpretation and the type of its corresponding argument:

specifier Description Characters extracted

i, u Integer

Any number of digits, optionally preceded by a sign (+ or
-).
Decimal digits assumed by default (0-9), but a 0 prefix
introduces octal digits (0-7), and 0x hexadecimal digits
(0-f).

d Decimal Any number of decimal digits (0-9), optionally preceded

[Type text]

integer by a sign (+ or -).

o Octal integer
Any number of octal digits (0-7), optionally preceded by a
sign (+ or -).

x
Hexadecimal
integer

Any number of hexadecimal digits (0-9, a-f, A-F),
optionally preceded by 0x or 0X, and all optionally
preceded by a sign (+ or -).

f, e, g

Floating point
number

A series of decimal digits, optionally containing a decimal
point, optionally preceeded by a sign (+ or -) and
optionally followed by the e or E character and a decimal
integer (or some of the other sequences supported by
strtod).
Implementations complying with C99 also support
hexadecimal floating-point format when preceded by 0x or
0X.

a

c Character

The next character. If a width other than 1 is specified, the
function reads exactly width characters and stores them in
the successive locations of the array passed as argument.
No null character is appended at the end.

s
String of
characters

Any number of non-whitespace characters, stopping at the
first whitespace character found. A terminating null
character is automatically added at the end of the stored
sequence.

p Pointer
address

A sequence of characters representing a pointer. The
particular format used depends on the system and library
implementation, but it is the same as the one used to
format %p in fprintf.

[characters] Scanset

Any number of the characters specified between the
brackets.
A dash (-) that is not the first character may produce non-
portable behavior in some library implementations.

[^characters]
Negated
scanset

Any number of characters none of them specified as
characters between the brackets.

n Count No input is consumed.

[Type text]

The number of characters read so far from stream is stored
in the pointed location.

% % A % followed by another % matches a single %.

Except for n, at least one character shall be consumed by any specifier. Otherwise the match fails, and the scan ends
there.

The format specifier can also contain sub-specifiers: asterisk (*), width and length (in that order), which are optional
and follow these specifications:

sub-
specifier

description

*
An optional starting asterisk indicates that the data is to be read from the
stream but ignored (i.e. it is not stored in the location pointed by an
argument).

width
Specifies the maximum number of characters to be read in the current reading
operation (optional).

length
One of hh, h, l, ll, j, z, t, L (optional).
This alters the expected type of the storage pointed by the corresponding
argument (see below).

This is a chart showing the types expected for the corresponding arguments where input is stored (both with and
without a length sub-specifier):

specifiers

length d i u o x f e g a c s []
[^] p n

(none) int* unsigned int* float* char* void** int*

hh signed
char* unsigned char*

signed
char*

h short int* unsigned short
int*

short int*

l long int* unsigned long
int* double* wchar_t*

long int*

ll long long
int*

unsigned long
long int*

long long
int*

j intmax_t* uintmax_t*

intmax_t*

[Type text]

z size_t* size_t*

size_t*

t ptrdiff_t* ptrdiff_t*

ptrdiff_t*

L

long
double*

Note: Yellow rows indicate specifiers and sub-specifiers introduced by C99.
... (additional arguments)

Depending on the format string, the function may expect a sequence of additional arguments, each containing a
pointer to allocated storage where the interpretation of the extracted characters is stored with the appropriate type.
There should be at least as many of these arguments as the number of values stored by the format specifiers.
Additional arguments are ignored by the function.
These arguments are expected to be pointers: to store the result of a fscanf operation on a regular variable, its name
should be preceded by the reference operator (&) (see example).

Return Value
On success, the function returns the number of items of the argument list successfully filled. This count can match the
expected number of items or be less (even zero) due to a matching failure, a reading error, or the reach of the end-of-file.

If a reading error happens or the end-of-file is reached while reading, the proper indicator is set (feof or ferror). And, if either
happens before any data could be successfully read, EOF is returned.

If an encoding error happens interpreting wide characters, the function sets errno to EILSEQ.

Example
1
2
3
4
5
6
7
8
9
10

/* fscanf example */
#include <stdio.h>

int main ()
{
 char str [80];
 float f;
 FILE * pFile;

 pFile = fopen ("myfile.txt","w+");

[Type text]

11
12
13
14
15
16
17
18

 fprintf (pFile, "%f %s", 3.1416, "PI");
 rewind (pFile);
 fscanf (pFile, "%f", &f);
 fscanf (pFile, "%s", str);
 fclose (pFile);
 printf ("I have read: %f and %s \n",f,str);
 return 0;
}

fgetc
int fgetc (FILE * stream);

Get character from stream
Returns the character currently pointed by the internal file position indicator of the specified stream. The internal file position
indicator is then advanced to the next character.

If the stream is at the end-of-file when called, the function returns EOF and sets the end-of-file indicator for the stream (feof).

If a read error occurs, the function returns EOF and sets the error indicator for the stream (ferror).

fgetc and getc are equivalent, except that getc may be implemented as a macro in some libraries.

Parameters
stream

Pointer to a FILE object that identifies an input stream.

Return Value
On success, the character read is returned (promoted to an int value).
The return type is int to accommodate for the special value EOF, which indicates failure:
If the position indicator was at the end-of-file, the function returns EOF and sets the eof indicator (feof) of stream.
If some other reading error happens, the function also returns EOF, but sets its error indicator (ferror) instead.

[Type text]

Example
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

/* fgetc example: money counter */
#include <stdio.h>
int main ()
{
 FILE * pFile;
 int c;
 int n = 0;
 pFile=fopen ("myfile.txt","r");
 if (pFile==NULL) perror ("Error opening file");
 else
 {
 do {
 c = fgetc (pFile);
 if (c == '$') n++;
 } while (c != EOF);
 fclose (pFile);
 printf ("The file contains %d dollar sign characters ($).\n",n);
 }
 return 0;
}

6(a) Describe void pointer and NULL pointer with example.

void pointer in C

A void pointer is a pointer that has no associated data type with it. A void pointer can hold address of any type and can be
typcasted to any type.

int a = 10;
char b = 'x';

void *p = &a; // void pointer holds address of int 'a'
p = &b; // void pointer holds address of char 'b'

[04] CO1 L2

[Type text]

Some Interesting Facts:
1) void pointers cannot be dereferenced. For example the following
program doesn’t compile.

#include<stdio.h>
int main()
{
 int a = 10;
 void *ptr = &a;
 printf("%d", *ptr);
 return 0;
}

Output:

Compiler Error: 'void*' is not a pointer-to-object
type

2) The C standard doesn’t allow pointer arithmetic with void
pointers. However, in GNU C it is allowed by considering the size
of void is 1. For example the following program compiles and runs
fine in gcc.

#include<stdio.h>
int main()
{
 int a[2] = {1, 2};
 void *ptr = &a;
 ptr = ptr + sizeof(int);
 printf("%d", *(int *)ptr);
 return 0;
}

Output:

2

[Type text]

Note that the above program may not work in other compilers.

6(b) Write a C program to calculate the mean and standard deviation of n real numbers using pointer notation.

NULL pointer in C

At the very high level, we can think of NULL as null pointer which is used in C for various purposes. Some of the most
common use cases for NULL are
a) To initialize a pointer variable when that pointer variable isn’t assigned any valid memory address yet.
b) To check for null pointer before accessing any pointer variable. By doing so, we can perform error handling in pointer
related code e.g. dereference pointer variable only if it’s not NULL.
c) To pass a null pointer to a function argument when we don’t want to pass any valid memory address.

The example of a) is

int * pInt = NULL;

The example of b) is

if(pInt != NULL) /*We could use if(pInt) as well*/
{ /*Some code*/}
else
{ /*Some code*/}

The example of c) is

int fun(int *ptr)
{
 /*Fun specific stuff is done with ptr here*/
 return 10;
}
fun(NULL);

It should be noted that NULL pointer is different from uninitialized and dangling pointer. In a specific program context, all

[06] CO2,
3,4

L3

[Type text]

uninitialized or dangling or NULL pointers are invalid but NULL is a specific invalid pointer which is mentioned in C
standard and has specific purposes. What we mean is that uninitialized and dangling pointers are invalid but they can point to
some memory address that may be accessible though the memory access is unintended.

#include <stdio.h>
int main()
{
 int *i, *j;
 int *ii = NULL, *jj = NULL;
 if(i == j)
 {
 printf("This might get printed if both i and j are same by chance.");
 }
 if(ii == jj)
 {
 printf("This is always printed coz ii and jj are same.");
 }
 return 0;
}

7(a) Describe any two of these: mallloc(), calloc(), realloc() and free() with proper syntax and examples.

S.N
.

Function & Description

1

void *calloc(int num, int size);

This function allocates an array of num elements each of which size in bytes will be
size.

2
void free(void *address);

This function releases a block of memory block specified by address.

3
void *malloc(int num);

This function allocates an array of num bytes and leave them uninitialized.

4
void *realloc(void *address, int newsize);

This function re-allocates memory extending it upto newsize.

[04] CO5 L2

[Type text]

Allocating Memory Dynamically

While programming, if you are aware of the size of an array, then it is easy and you can define it as an array. For example, to
store a name of any person, it can go up to a maximum of 100 characters, so you can define something as follows −

char name[100];

But now let us consider a situation where you have no idea about the length of the text you need to store, for example, you
want to store a detailed description about a topic. Here we need to define a pointer to character without defining how much
memory is required and later, based on requirement, we can allocate memory as shown in the below example −

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main() {

 char name[100];
 char *description;

 strcpy(name, "Zara Ali");

 /* allocate memory dynamically */
 description = malloc(200 * sizeof(char));

 if(description == NULL) {
 fprintf(stderr, "Error - unable to allocate required memory\n");
 }
 else {
 strcpy(description, "Zara ali a DPS student in class 10th");
 }

 printf("Name = %s\n", name);
 printf("Description: %s\n", description);
}

When the above code is compiled and executed, it produces the following result.

Name = Zara Ali

[Type text]

Description: Zara ali a DPS student in class 10th

Same program can be written using calloc(); only thing is you need to replace malloc with calloc as follows −

calloc(200, sizeof(char));

So you have complete control and you can pass any size value while allocating memory, unlike arrays where once the size
defined, you cannot change it.

Resizing and Releasing Memory

When your program comes out, operating system automatically release all the memory allocated by your program but as a
good practice when you are not in need of memory anymore then you should release that memory by calling the function
free().

Alternatively, you can increase or decrease the size of an allocated memory block by calling the function realloc(). Let us
check the above program once again and make use of realloc() and free() functions −

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main() {

 char name[100];
 char *description;

 strcpy(name, "Zara Ali");

 /* allocate memory dynamically */
 description = malloc(30 * sizeof(char));

 if(description == NULL) {
 fprintf(stderr, "Error - unable to allocate required memory\n");
 }
 else {
 strcpy(description, "Zara ali a DPS student.");
 }

[Type text]

 /* suppose you want to store bigger description */
 description = realloc(description, 100 * sizeof(char));

 if(description == NULL) {
 fprintf(stderr, "Error - unable to allocate required memory\n");
 }
 else {
 strcat(description, "She is in class 10th");
 }

 printf("Name = %s\n", name);
 printf("Description: %s\n", description);

 /* release memory using free() function */
 free(description);
}

When the above code is compiled and executed, it produces the following result.

Name = Zara Ali
Description: Zara ali a DPS student.She is in class 10th

You can try the above example without re-allocating extra memory, and strcat() function will give an error due to lack of
available memory in description.

7(b) Describe stack and queue datastructure with examples and applications.

A stack is an Abstract Data Type (ADT), commonly used in most programming languages. It is named stack as it behaves
like a real-world stack, for example – a deck of cards or a pile of plates, etc.

[06] CO6 L2

[Type text]

A real-world stack allows operations at one end only. For example, we can place or remove a card or plate from the top of the
stack only. Likewise, Stack ADT allows all data operations at one end only. At any given time, we can only access the top
element of a stack.

This feature makes it LIFO data structure. LIFO stands for Last-in-first-out. Here, the element which is placed (inserted or
added) last, is accessed first. In stack terminology, insertion operation is called PUSH operation and removal operation is
called POP operation.

Stack Representation

The following diagram depicts a stack and its operations −

A stack can be implemented by means of Array, Structure, Pointer, and Linked List. Stack can either be a fixed size one or it
may have a sense of dynamic resizing. Here, we are going to implement stack using arrays, which makes it a fixed size stack

[Type text]

implementation.

Basic Operations

Stack operations may involve initializing the stack, using it and then de-initializing it. Apart from these basic stuffs, a stack is
used for the following two primary operations −

 push() − Pushing (storing) an element on the stack.
 pop() − Removing (accessing) an element from the stack.

When data is PUSHed onto stack.

To use a stack efficiently, we need to check the status of stack as well. For the same purpose, the following functionality is
added to stacks −

 peek() − get the top data element of the stack, without removing it.
 isFull() − check if stack is full.
 isEmpty() − check if stack is empty.

At all times, we maintain a pointer to the last PUSHed data on the stack. As this pointer always represents the top of the
stack, hence named top. The top pointer provides top value of the stack without actually removing it.

First we should learn about procedures to support stack functions −

peek()

Algorithm of peek() function −

begin procedure peek

 return stack[top]

end procedure

Implementation of peek() function in C programming language −

[Type text]

Example

int peek() {
 return stack[top];
}

isfull()

Algorithm of isfull() function −

begin procedure isfull

 if top equals to MAXSIZE
 return true
 else
 return false
 endif

end procedure

Implementation of isfull() function in C programming language −

Example

bool isfull() {
 if(top == MAXSIZE)
 return true;
 else
 return false;
}

isempty()

Algorithm of isempty() function −

begin procedure isempty

 if top less than 1
 return true
 else

[Type text]

 return false
 endif

end procedure

Implementation of isempty() function in C programming language is slightly different. We initialize top at -1, as the index in
array starts from 0. So we check if the top is below zero or -1 to determine if the stack is empty. Here's the code −

Example

bool isempty() {
 if(top == -1)
 return true;
 else
 return false;
}

Push Operation

The process of putting a new data element onto stack is known as a Push Operation. Push operation involves a series of steps
−

 Step 1 − Checks if the stack is full.
 Step 2 − If the stack is full, produces an error and exit.
 Step 3 − If the stack is not full, increments top to point next empty space.
 Step 4 − Adds data element to the stack location, where top is pointing.
 Step 5 − Returns success.

[Type text]

If the linked list is used to implement the stack, then in step 3, we need to allocate space dynamically.

Algorithm for PUSH Operation

A simple algorithm for Push operation can be derived as follows −

begin procedure push: stack, data

 if stack is full
 return null
 endif

 top ← top + 1

 stack[top] ← data

end procedure

Implementation of this algorithm in C, is very easy. See the following code −

Example

void push(int data) {

[Type text]

 if(!isFull()) {
 top = top + 1;
 stack[top] = data;
 } else {
 printf("Could not insert data, Stack is full.\n");
 }
}

Pop Operation

Accessing the content while removing it from the stack, is known as a Pop Operation. In an array implementation of pop()
operation, the data element is not actually removed, instead top is decremented to a lower position in the stack to point to the
next value. But in linked-list implementation, pop() actually removes data element and deallocates memory space.

A Pop operation may involve the following steps −

 Step 1 − Checks if the stack is empty.
 Step 2 − If the stack is empty, produces an error and exit.
 Step 3 − If the stack is not empty, accesses the data element at which top is pointing.
 Step 4 − Decreases the value of top by 1.
 Step 5 − Returns success.

[Type text]

Algorithm for Pop Operation

A simple algorithm for Pop operation can be derived as follows −

begin procedure pop: stack

 if stack is empty
 return null
 endif

 data ← stack[top]

 top ← top - 1

 return data

end procedure

Implementation of this algorithm in C, is as follows −

Example

int pop(int data) {

 if(!isempty()) {
 data = stack[top];
 top = top - 1;
 return data;
 } else {
 printf("Could not retrieve data, Stack is empty.\n");
 }
}

Queue is an abstract data structure, somewhat similar to Stacks. Unlike stacks, a queue is open at both its ends. One end is
always used to insert data (enqueue) and the other is used to remove data (dequeue). Queue follows First-In-First-Out
methodology, i.e., the data item stored first will be accessed first.

[Type text]

A real-world example of queue can be a single-lane one-way road, where the vehicle enters first, exits first. More real-world
examples can be seen as queues at the ticket windows and bus-stops.

Queue Representation

As we now understand that in queue, we access both ends for different reasons. The following diagram given below tries to
explain queue representation as data structure −

As in stacks, a queue can also be implemented using Arrays, Linked-lists, Pointers and Structures. For the sake of simplicity,
we shall implement queues using one-dimensional array.

Basic Operations

Queue operations may involve initializing or defining the queue, utilizing it, and then completely erasing it from the memory.
Here we shall try to understand the basic operations associated with queues −

 enqueue() − add (store) an item to the queue.

[Type text]

 dequeue() − remove (access) an item from the queue.

Few more functions are required to make the above-mentioned queue operation efficient. These are −

 peek() − Gets the element at the front of the queue without removing it.
 isfull() − Checks if the queue is full.
 isempty() − Checks if the queue is empty.

In queue, we always dequeue (or access) data, pointed by front pointer and while enqueing (or storing) data in the queue we
take help of rear pointer.

Let's first learn about supportive functions of a queue −

peek()

This function helps to see the data at the front of the queue. The algorithm of peek() function is as follows −

Algorithm

begin procedure peek

 return queue[front]

end procedure

Implementation of peek() function in C programming language −

Example

int peek() {
 return queue[front];
}

isfull()

As we are using single dimension array to implement queue, we just check for the rear pointer to reach at MAXSIZE to
determine that the queue is full. In case we maintain the queue in a circular linked-list, the algorithm will differ. Algorithm of

[Type text]

isfull() function −

Algorithm

begin procedure isfull

 if rear equals to MAXSIZE
 return true
 else
 return false
 endif

end procedure

Implementation of isfull() function in C programming language −

Example

bool isfull() {
 if(rear == MAXSIZE - 1)
 return true;
 else
 return false;
}

isempty()

Algorithm of isempty() function −

Algorithm

begin procedure isempty

 if front is less than MIN OR front is greater than rear
 return true
 else
 return false
 endif

end procedure

[Type text]

If the value of front is less than MIN or 0, it tells that the queue is not yet initialized, hence empty.

Here's the C programming code −

Example

bool isempty() {
 if(front < 0 || front > rear)
 return true;
 else
 return false;
}

Enqueue Operation

Queues maintain two data pointers, front and rear. Therefore, its operations are comparatively difficult to implement than
that of stacks.

The following steps should be taken to enqueue (insert) data into a queue −

 Step 1 − Check if the queue is full.
 Step 2 − If the queue is full, produce overflow error and exit.
 Step 3 − If the queue is not full, increment rear pointer to point the next empty space.
 Step 4 − Add data element to the queue location, where the rear is pointing.
 Step 5 − return success.

[Type text]

Sometimes, we also check to see if a queue is initialized or not, to handle any unforeseen situations.

Algorithm for enqueue operation

procedure enqueue(data)
 if queue is full
 return overflow
 endif

 rear ← rear + 1

 queue[rear] ← data

 return true

end procedure

Implementation of enqueue() in C programming language −

[Type text]

Example

int enqueue(int data)
 if(isfull())
 return 0;

 rear = rear + 1;
 queue[rear] = data;

 return 1;
end procedure

Dequeue Operation

Accessing data from the queue is a process of two tasks − access the data where front is pointing and remove the data after
access. The following steps are taken to perform dequeue operation −

 Step 1 − Check if the queue is empty.
 Step 2 − If the queue is empty, produce underflow error and exit.
 Step 3 − If the queue is not empty, access the data where front is pointing.
 Step 4 − Increment front pointer to point to the next available data element.
 Step 5 − Return success.

[Type text]

Algorithm for dequeue operation

procedure dequeue
 if queue is empty
 return underflow
 end if

 data = queue[front]
 front ← front + 1

 return true
end procedure

Implementation of dequeue() in C programming language −

Example

int dequeue() {

[Type text]

 if(isempty())
 return 0;

 int data = queue[front];
 front = front + 1;

 return data;
}

8(a) Write a C program to find the square root of a given number.

#include<stdio.h>
void main()
{
 float m,n;
 float num;
 n=0.0001; // This is taken small so that we can calculate upto decimal places also
 printf("ENTER A NUMBER : ");
 scanf("%f",&num);

 for(m=0;m<num;m=m+n)
 {
 if((m*m)>num)
 {
 m=m-n; // This if() is used to calculate the final value as soon as the square of the
number exceeds
 break; // the number then we deduct the value exceeded and stop the procedure using break;
this is our final value which is stored in m;
 }
 }
 printf("%.2f",m);
 getch();
 return 1;
}

[06] CO2,
CO3

L3

[Type text]

8(b) Describe any two file output functions with proper syntax and example.

fputs ()

Description

The C library function int fputs(const char *str, FILE *stream) writes a string to the specified stream up to but not
including the null character.

Declaration

Following is the declaration for fputs() function.

int fputs(const char *str, FILE *stream)

Parameters

 str -- This is an array containing the null-terminated sequence of characters to be written.
 stream -- This is the pointer to a FILE object that identifies the stream where the string is to be written.

Return Value

This function returns a non-negative value, or else on error it returns EOF.

Example

The following example shows the usage of fputs() function.

#include <stdio.h>

int main ()
{
 FILE *fp;

[04] CO1 L2

[Type text]

 fp = fopen("file.txt", "w+");

 fputs("This is c programming.", fp);
 fputs("This is a system programming language.", fp);

 fclose(fp);

 return(0);
}

Let us compile and run the above program, this will create a file file.txt with the following content:

This is c programming.This is a system programming language.

Now let's see the content of the above file using the following program:

#include <stdio.h>

int main ()
{
 FILE *fp;
 int c;

 fp = fopen("file.txt","r");
 while(1)
 {
 c = fgetc(fp);
 if(feof(fp))
 {
 break ;
 }
 printf("%c", c);
 }
 fclose(fp);
 return(0);
}

[Type text]

fprintf()

Description

The C library function int fprintf(FILE *stream, const char *format, ...) sends formatted output to a stream.

Declaration

Following is the declaration for fprintf() function.

int fprintf(FILE *stream, const char *format, ...)

Parameters

 stream − This is the pointer to a FILE object that identifies the stream.
 format − This is the C string that contains the text to be written to the stream. It can optionally contain embedded

format tags that are replaced by the values specified in subsequent additional arguments and formatted as requested.
Format tags prototype is %[flags][width][.precision][length]specifier, which is explained below −

specifier Output

c Character

d or i Signed decimal integer

e Scientific notation (mantissa/exponent) using e character

E Scientific notation (mantissa/exponent) using E character

f Decimal floating point

g Uses the shorter of %e or %f

G Uses the shorter of %E or %f

o Signed octal

s String of characters

u Unsigned decimal integer

x Unsigned hexadecimal integer

X Unsigned hexadecimal integer (capital letters)

[Type text]

p Pointer address

n Nothing printed

% Character

flags Description

-
Left-justifies within the given field width; Right justification is the default (see
width sub-specifier).

+
Forces to precede the result with a plus or minus sign (+ or -) even for positive
numbers. By default, only negative numbers are preceded with a -ve sign.

(space) If no sign is written, a blank space is inserted before the value.

Used with o, x or X specifiers. The value is preceded with 0, 0x or 0X
respectively for values different than zero. Used with e, E and f, it forces the
written output to contain a decimal point even if no digits would follow. By
default, if no digits follow then no decimal point is written. Used with g or G the
result is the same as with e or E but trailing zeros are not removed.

0
Left-pads the number with zeroes (0) instead of spaces, where padding is
specified (see width sub-specifier).

width Description

(number)
Minimum number of characters to be printed. If the value to be printed is shorter
than this number, the result is padded with blank spaces. The value is not
truncated even if the result is larger.

*
The width is not specified in the format string, but as an additional integer value
argument preceding the argument that has to be formatted.

.precision Description

.number

For integer specifiers (d, i, o, u, x, X) − precision specifies the minimum number
of digits to be written. If the value to be written is shorter than this number, the
result is padded with leading zeros. The value is not truncated even if the result is
longer. A precision of 0 means that no character is written for the value 0. For e, E
and f specifiers: this is the number of digits to be printed after the decimal point.
For g and G specifiers: This is the maximum number of significant digits to be
printed. For s: this is the maximum number of characters to be printed. By default
all characters are printed until the ending null character is encountered. For c type:
it has no effect. When no precision is specified, the default is 1. If the period is

[Type text]

specified without an explicit value for precision, 0 is assumed.

.*
The precision is not specified in the format string, but as an additional integer
value argument preceding the argument that has to be formatted.

length Description

h
The argument is interpreted as a short int or unsigned short int (only applies to
integer specifiers: i, d, o, u, x and X).

l
The argument is interpreted as a long int or unsigned long int for integer specifiers
(i, d, o, u, x and X), and as a wide character or wide character string for specifiers
c and s.

L
The argument is interpreted as a long double (only applies to floating point
specifiers: e, E, f, g and G).

 additional arguments − Depending on the format string, the function may expect a sequence of additional arguments,
each containing one value to be inserted instead of each %-tag specified in the format parameter, if any. There should
be the same number of these arguments as the number of %-tags that expect a value.

Return Value

If successful, the total number of characters written is returned otherwise, a negative number is returned.

Example

The following example shows the usage of fprintf() function.

#include <stdio.h>
#include <stdlib.h>

int main()
{
 FILE * fp;

 fp = fopen ("file.txt", "w+");
 fprintf(fp, "%s %s %s %d", "We", "are", "in", 2012);

 fclose(fp);

[Type text]

 return(0);
}

Let us compile and run the above program that will create a file file.txt with the following content −

We are in 2012

Now let's see the content of the above file using the following program −

#include <stdio.h>

int main ()
{
 FILE *fp;
 int c;

 fp = fopen("file.txt","r");
 while(1)
 {
 c = fgetc(fp);
 if(feof(fp))
 {
 break;
 }
 printf("%c", c);
 }
 fclose(fp);
 return(0);
}

