
Internal Assessment Test 1 – September 2016

10CS72 - Embedded Computing Systems

Answers

1.
a. What is an embedded computer system? Explain the characteristics and

constraints of embedded computing applications. (7)

An Embedded computer system is any device that includes a
programmable computer but is not itself intended to be a general-purpose
computer. An embedded system is typically an electronic/electro-
mechanical system designed to perform a specific function and is a
combination of both hardware and software.
Fax machine, clock built from a microprocessor, microwave oven,
washing machine, elevator controller are examples of embedded
computing system.

Characteristics of Embedded computing applications:

1) Embedded computing systems have to provide sophisticated
functionality:
#Complex algorithms: The operations performed by the microprocessor
may be very sophisticated. For example, a microprocessor to control an
automobile engine must perform complex functions to optimize the
performance of the car while minimizing pollution and fuel utilization.
#User interface: Microprocessors are frequently used to control complex
user interfaces that may include multiple menus and many options. For
example, moving maps in Global Positioning System (GPS) navigation
have sophisticated user interfaces.

2) Embedded computing operations must often be performed to meet
deadlines:
#Real time: Many embedded computing systems have to perform in real
time— if the data is not ready by a certain deadline, the system breaks. In
some cases, failure to meet a deadline is unsafe and can even endanger
lives. In other cases, it may not create safety problems but does create
unhappy customers—missed deadlines in printers, for example, can result
in scrambled pages.
#Multirate: Not only must operations be completed by deadlines, but
many embedded computing systems have several real-time activities
going on at the same time. They may simultaneously control some
operations that run at slow rates and others that run at high rates.
Multimedia applications are prime examples of multirate behavior. The
audio and video portions of a multimedia stream run at very different
rates, but they must remain closely synchronized. Failure to meet a



deadline on either the audio or video portions spoils the perception of the
entire presentation.

3) Costs of various sorts are also very important:
#Manufacturing cost: The total cost of building the system is very
important in many cases. Manufacturing cost is determined by many
factors, including the type of microprocessor used, the amount of memory
required, and the types of I/O devices.
#Power and energy: Power consumption directly affects the cost of the
hardware, since a larger power supply may be necessary. Energy
consumption affects battery life, which is important in many applications,
as well as heat consumption, which can be important even in desktop
applications.

4) Finally, most embedded computing systems are designed by small
teams on tight deadlines.

Constraints of an embedded system:
How much hardware do we need?
We need to choose the amount of computing power we apply to our
problem. We can not only select the type of microprocessor used, but also
select the amount of memory, the peripheral devices, and more. Since we
often must meet performance deadlines and manufacturing cost
constraints, the choice of hardware is important—too little hardware and
the system fails to meet its deadlines, too much hardware and it becomes
too expensive.

How do we meet deadlines?
The brute force way of meeting a deadline is to speed up the hardware so
that the program runs faster. But, this makes the system more expensive.
It may seem that increasing the CPU clock rate increases program speed.
But, it may not be true, because the program’s speed may be limited by
the memory system.

How do we minimize power consumption?
In battery-powered applications, power consumption is extremely
important. Even in non-battery applications, excessive power
consumption can increase heat dissipation. One way to make a digital
system consume less power is to make it run more slowly. But too much
slowing down of the system leads to missing deadlines. Careful design is
required to slow down the noncritical parts of the machine for power
consumption while still meeting necessary performance goals.

How do we design for upgradability?
The hardware platform may be used over several product generations or
for several different versions of a product in the same generation, with
few or no changes. However, we want to be able to add features by



changing software. We need to think ahead when we design a machine
that will provide the required performance for software in the future.

Does it really work?
Reliability is always important when selling products—customers rightly
expect that products they buy will work. Reliability is especially
important in some applications, such as safety-critical systems. If we wait
until we have a running system and try to eliminate the bugs, we will be
too late—we won’t find enough bugs, it will be too expensive to fix them,
and it will take too long as well. Following set of challenges comes from
the characteristics of the components and systems themselves:

#Complex testing: Exercising an embedded system is generally more
difficult than typing in some data. We may have to run a real machine in
order to generate the proper data. The timing of data is often important,
meaning that we cannot separate the testing of an embedded computer
from the machine in which it is embedded.

#Limited observability and controllability: Embedded computing systems
usually do not come with keyboards and screens. This makes it more
difficult to see what is going on and to affect the system’s operation. We
may be forced to watch the values of electrical signals on the
microprocessor bus, for example, to know what is going on inside the
system. Moreover, in real-time applications we may not be able to easily
stop the system to see what is going on inside.

#Restricted development environments: The development environments
for embedded systems (the tools used to develop software and hardware)
are often much more limited than those available for PCs and
workstations. We generally compile code on one type of machine, such as
a PC, and download it onto the embedded system. To debug the code, we
must usually rely on programs that run on the PC or workstation and then
look inside the embedded system.

b. Draw UML collaboration diagram for the data compressor. (3)

2.
a. Explain with a neat diagram the embedded system design process. (7)

Embedded system design process:



Figure above summarizes the major steps in the embedded system design
process. The design process starts with the system requirements, followed by
specification, where we create a more detailed description of what we want. But
the specification states only how the system behaves, not how it is built. The
details of the system’s internals begin to take shape when we develop the
architecture, which gives the system structure in terms of large components.
Once we know the components we need, we can design components, including
both software modules and any specialized hardware we need. Based on those
components, we can finally integrate it into a complete system.

There are two ways of considering the design:
 Top–down—Design begins with the most abstract description of the

system and conclude with concrete details.
 Bottom–up— Design starts with the components to build a system.

Bottom–up design steps are shown in the figure as dashed-line arrows.
We need bottom–up design because:

o We do not have perfect insight into how later stages of the design
process will turn out.

o Decisions at one stage of design are based upon estimates of what
will happen later. In general, the less experience we have with the
design of similar systems, the more we will have to rely on bottom-
up design information to help us refine the system.

We need to consider the major goals of the design:
# manufacturing cost;
# performance (both overall speed and deadlines); and
# power consumption.
We must also consider the tasks we need to perform at every step in the design
process. At each step in the design, we add detail:
# We must analyze the design at each step to determine how we can meet the
specifications.
# We must then refine the design to add detail.



# And we must verify the design to ensure that it still meets all system goals,
such as cost, speed, and so on.

1 Requirements
Clearly, before we design a system, we must know what we are designing. The
initial stages of the design process capture this information for use in creating
the architecture and components. There are two phases:

 First, we gather an informal description from the customers known as
requirements.

 Second, we refine the requirements into a specification that contains
enough information to begin designing the system architecture.

Separating out requirements analysis and specification is necessary because of
the large gap between what the customers can describe about the system they
want and what the architects need to design the system. Hence we need to keep
in mind the following:

 Consumers of embedded systems are usually not embedded system
designers. They can only envision users’ interactions with the system.

 Consumers may have unrealistic expectations as to what can be done
within their budgets; and they may also express their desires in a
language very different from system architects’ jargon.

 A Structured approach is to capture consistent set of requirements from
the customer and then massaging those requirements into a more
formal specification. This helps us manage the process of translating
from the consumer’s language to the designer’s.

Requirements may be functional or nonfunctional.
Functional Requirements:
We need to capture the basic functions of the embedded system. This described
what the embedded system is intended to do.

Non-functional requirements include:
# Performance: The speed of the system is often a major consideration both for
the usability of the system and for its ultimate cost. Performance is a
combination of soft performance metrics such as approximate time to perform a
user-level function and hard deadlines by which a particular operation must be
completed.
# Cost: The target cost or purchase price for the system is a key factor. Cost
typically has two major components: manufacturing cost includes the cost of
components and assembly; nonrecurring engineering (NRE) costs include the
personnel and other costs of designing the system.
# Physical size and weight: The physical aspects of the final system can vary
greatly depending upon the application. An industrial control system for an
assembly line may be designed to fit into a standard-size rack with no strict



limitations on weight. A handheld device typically has tight requirements on
both size and weight that can ripple through the entire system design.
# Power consumption: Power is important in battery-powered systems and is
often important in other applications as well. Power can be specified in the
requirements stage in terms of battery life—the customer is unlikely to be able
to describe the allowable wattage.

Validating a set of requirements is ultimately a psychological task since it
requires understanding both what people want and how they communicate those
needs.

One good way to refine at least the user interface portion of a system’s
requirements is to build a mock-up.

 The mock-ups use canned data to simulate functionality in a restricted
demonstration, and it may be executed on a PC or a workstation.

 Mock-ups give the customer a good idea of how the system will be used
and how the user can react to it.

Physical, nonfunctional models of devices can also give customers a better idea
of characteristics such as size and weight.

Figure 1.2 above shows a sample requirements form that can be filled out at the
start of the project. We can use the form as a checklist in considering the basic
characteristics of the system. The entries in the form are:
# Name: This is simple but helpful. Giving a name to the project not only
simplifies talking about it to other people but can also crystallize the purpose of
the machine.
# Purpose: This should be a brief one- or two-line description of what the
system is supposed to do. If you can’t describe the essence of your system in
one or two lines, chances are that you don’t understand it well enough.
# Inputs and outputs: These two entries are more complex than they seem. The
inputs and outputs to the system encompass a wealth of detail:
— Types of data: Analog electronic signals? Digital data? Mechanical inputs?
— Data characteristics: Periodically arriving data, such as digital audio
samples? Occasional user inputs? How many bits per data element?



— Types of I/O devices: Buttons? Analog/digital converters? Video displays?
# Functions: This is a more detailed description of what the system does. A
good way to approach this is to work from the inputs to the outputs: When the
system receives an input, what does it do? How do user interface inputs affect
these functions? How do different functions interact?
# Performance: Many embedded computing systems spend at least some time
controlling physical devices or processing data coming from the physical world.
The computations must be performed within a certain time frame. It is essential
that the performance requirements be identified early since they must be
carefully measured during implementation to ensure that the system works
properly.
# Manufacturing cost: This includes primarily the cost of the hardware
components. A rough estimate on the cost should have some idea of the
eventual cost range. Cost has a substantial influence on architecture: A machine
that is meant to sell at $10 most likely has a very different internal structure
than a $100 system.
# Power: A rough idea of how much power the system can consume is very
important. Typically, the most important decision is whether the machine will
be battery powered or plugged into the wall. Battery-powered machines must be
much more careful about how they spend energy.
# Physical size and weight: Some indication of the physical size of the system
will guide certain architectural decisions. A desktop machine has much more
flexibility in the components used than, for example, a lapel mounted voice
recorder.

After writing the requirements, we should check for internal consistency.

2 Specification
The specification is more precise—it serves as the contract between the
customer and the architects. As such, the specification must be carefully written
so that it accurately reflects the customer’s requirements and does so in a way
that can be clearly followed during design.

Characteristics of a good specification:
1) Meet system and customer requirements
2) Should be unambiguous
3) Should be clear and understandable
4) Should be complete

UML is the language that is widely used for describing specifications.

3 Architecture Design

 The specification only says what the system does, but does not say how
the system does things.



 The purpose of Architecture is to describe how the system implements
those functions.

 The architecture is a plan for the overall structure of the system that will
be used later to design the components that make up the architecture.

 The creation of the architecture is the first phase of design.

There are 2 major levels of architectural description.

First, high level block diagram as shown in Figure (a) below:

Figure 1.3 shows sample system architecture in the form of a block diagram that
shows major operations and data flows among them. This block diagram is still
quite abstract, and does not specify which operations will be performed by
software running on a CPU, what will be done by special-purpose hardware,
and so on. However, it describes how to implement the functions described in
the specification.

After we have designed an initial architecture that is not biased toward too
many implementation details should we refine that system block diagram into 2
block diagrams: one for hardware and another for software. These two more
refined block diagrams are shown in Figure 1.4. These include more details
such as where units in the software block diagram will be executed in the
hardware block diagram and when operations will be performed in time.



Architectural descriptions must be designed to satisfy both functional and
nonfunctional requirements. Not only must all the required functions be present,
but we must meet cost, speed, power, and other nonfunctional constraints.

Starting out with system architecture and refining that to hardware and software
architectures is one good way to ensure that we meet all specifications: We can
concentrate on the functional elements in the system block diagram, and then
consider the nonfunctional constraints when creating the hardware and software
architectures.

We must somehow be able to estimate the properties of the components of the
block diagrams, such as the search and rendering functions in the moving map
system. Accurate estimation derives in part from experience, both general
design experience and particular experience with similar systems. However, we
can sometimes create simplified models to help us make more accurate
estimates. Sound estimates of all nonfunctional constraints during the
architecture phase are crucial, since decisions based on bad data will show up
during the final phases of design, indicating that we did not meet the
specification.

4 Designing Hardware and Software Components
The architectural description tells us what components we need. The component
design effort builds those components in conformance to the architecture and
specification.

The components will in general include both hardware—FPGAs, boards, and so
on—and software modules. Some of the components will be ready-made. The
CPU, for example, will be a standard component in almost all cases, as will
memory chips and many other components.

In GPS moving map, the GPS receiver is a good example of a specialized
component that will nonetheless be a predesigned, standard component.

We can also make use of standard software modules. One good example is the
topographic database. Standard topographic databases exist, and you probably
want to use standard routines to access the database—not only is the data in a
predefined format, but it is highly compressed to save storage. Using standard
software for these access functions not only saves us design time, but it may
give us a faster implementation for specialized functions such as the data
decompression phase.

We have to design some components ourselves. Even if we are using only
standard integrated circuits, we may have to design the printed circuit board that
connects them. We have to do a lot of custom programming as well.

When creating these embedded software modules, we must make use of our
expertise to ensure that the system runs properly in real time and that it does not



take up more memory space than is allowed. The power consumption of the
moving map software example is particularly important.
We need to be very careful about how you read and write memory to minimize
power—for example, since memory accesses are a major source of power
consumption, memory transactions must be carefully planned to avoid reading
the same data several times.

5 System Integration
After the components are built, we need put them together and see the working
system. This phase is very critical, and usually consists of lot of bugs. Good
planning helps us find the bugs quickly. Building the system in phases and
running properly chosen tests can also find bugs more easily.

Only by fixing the simple bugs early will we be able to uncover the more
complex or obscure bugs that can be identified only by giving the system a hard
workout. We need to ensure during the architectural and component design
phases that we make it as easy as possible to assemble the system in phases and
test functions relatively independently.

System integration is difficult because it usually uncovers problems. It is often
hard to observe the system in sufficient detail to determine exactly what is
wrong— the debugging facilities for embedded systems are usually much more
limited than what you would find on desktop systems. As a result, determining
why things do not stet work correctly and how they can be fixed is a challenge
in itself. Careful attention to inserting appropriate debugging facilities during
design can help ease system integration problems, but the nature of embedded
computing means that this phase will always be a challenge.

b. How would the ARM status word be set after the operation: -4+5 ? (3)
-4 in hex = 0xfffffffc
5 in hex = 0x5
-4+5 = 0xfffffffc+0x5=0x1 with a carry out = 1
Since we are adding a +ve and a –ve number, and getting a carry out, Carry
flag will be set.
N: 0
Z: 0
C: 1
V: 0

3.
a. Discuss the requirements chart, with an example. (7)

Figure below shows a sample requirements form that can be filled out at the
start of the project. We can use the form as a checklist in considering the
basic characteristics of the system.



The entries in the form consist of the following:
# Name: This is simple but helpful. Giving a name to the project not only
simplifies talking about it to other people but can also crystallize the purpose
of the machine.
# Purpose: This should be a brief one- or two-line description of what the
system is supposed to do. If you can’t describe the essence of your system in
one or two lines, chances are that you don’t understand it well enough.
# Inputs and outputs: These two entries are more complex than they seem.
The inputs and outputs to the system encompass a wealth of detail:
— Types of data: Analog electronic signals? Digital data? Mechanical
inputs?
— Data characteristics: Periodically arriving data, such as digital audio
samples? Occasional user inputs? How many bits per data element?
— Types of I/O devices: Buttons? Analog/digital converters? Video
displays?
# Functions: This is a more detailed description of what the system does. A
good way to approach this is to work from the inputs to the outputs: When
the system receives an input, what does it do? How do user interface inputs
affect these functions? How do different functions interact?
# Performance: Many embedded computing systems spend at least some
time controlling physical devices or processing data coming from the
physical world. The computations must be performed within a certain time
frame. It is essential that the performance requirements be identified early
since they must be carefully measured during implementation to ensure that
the system works properly.
# Manufacturing cost: This includes primarily the cost of the hardware
components. A rough estimate on the cost should have some idea of the
eventual cost range. Cost has a substantial influence on architecture: A
machine that is meant to sell at $10 most likely has a very different internal
structure than a $100 system.
# Power: A rough idea of how much power the system can consume is very
important. Typically, the most important decision is whether the machine
will be battery powered or plugged into the wall. Battery-powered machines
must be much more careful about how they spend energy.



# Physical size and weight: Some indication of the physical size of the
system will guide certain architectural decisions. A desktop machine has
much more flexibility in the components used than, for example, a lapel
mounted voice recorder.

After writing the requirements internal consistency must be checked.
Example: Let us consider an example of GPS moving map system.

Initial List:
Functionality: This system is designed for highway driving and similar uses,
not nautical or aviation uses that require more specialized databases and
functions. The system should show major roads and other landmarks
available in standard topographic databases.
# User interface: The screen should have at least 400_600 pixel resolution.
The device should be controlled by no more than three buttons. A menu
system should pop up on the screen when buttons are pressed to allow the
user to make selections to control the system.
#Performance: The map should scroll smoothly. Upon power-up, a display
should take no more than one second to appear, and the system should be
able to verify its position and display the current map within 15 s.
# Cost: The selling cost (street price) of the unit should be no more than
$100.
# Physical size and weight: The device should fit comfortably in the palm of
the hand.
# Power consumption: The device should run for at least eight hours on four
AA batteries.

Requirements Chart:

Name GPS moving map
Purpose Consumer-grade moving map for driving use
Inputs Power button, two control buttons
Outputs Back-lit LCD display 400 _ 600

Functions

Uses 5-receiver GPS system; three user-
selectable resolutions; always displays current
latitude and longitude

Performance
Updates screen within 0.25 seconds upon
movement

Manufacturing cost $30



Power 100mW

Physical size and weight No more than 2” _ 6, ” 12 ounces

b. What is the meaning of these ARM condition codes: EQ, NE, MI, VS, GE, and LT? (3)

Code Meaning Flags Tested

EQ Equal. Z==1

NE Not equal. Z==0

CS or HS Unsigned higher or same (or carry set). C==1

CC or LO Unsigned lower (or carry clear). C==0

MI Negative. The mnemonic stands for "minus". N==1

PL Positive or zero. The mnemonic stands for "plus". N==0

VS Signed overflow. The mnemonic stands for "V set". V==1

VC No signed overflow. The mnemonic stands for "V clear". V==0

HI Unsigned higher. (C==1) && (Z==0)

LS Unsigned lower or same. (C==0) || (Z==1)

GE Signed greater than or equal. N==V

LT Signed less than. N!=V

GT Signed greater than. (Z==0) && (N==V)

LE Signed less than or equal. (Z==1) || (N!=V)

AL (or omitted) Always executed. None tested.

4.
a. Draw and explain the sequence diagram for transmitting control input in a model

train controller. (7)
The role of the formatter during the panel’s operation is illustrated by
the sequence diagram below. The figure shows two changes to the knob
settings: first to the throttle, inertia, or emergency stop; then to the
train number. The panel is called periodically by the formatter to
determine if any control settings have changed. If a setting has changed
for the current train, the formatter decides to send a command, issuing
a send-command behavior to cause the transmitter to send the bits.
Because transmission is serial, it takes a noticeable amount of time for
the transmitter to finish a command; in the meantime, the formatter
continues to check the panel’s control settings. If the train number has
changed, the formatter must cause the knob settings to be reset to the
proper values for the new train.



b. Write ARM assembly code to implement the following C assignment. (3)
 y=(a<<3) | (b&15);

ADR r4, a ; get address for a
LDR r0, [r4] ; get value of a
MOV r0, r0, LSL 3 ; perform shift
ADR r4, b ; get address for b
LDR r1, [r4] ; get value of b
AND r1, r1, #15 ; perform logical AND
ORR r1, r0, r1 ; compute final value of z
ADR r4, z ; get address for z
STR r1, [r4] ; store value of z

5.
a. Define Digital Command Control (DCC). Explain the conceptual specification of a

model train controller system. (7)

Digital Command Control (DCC) is a standard for a system to operate
model railways digitally. DCC specifies some important aspects of the
system, particularly those that allow equipment to interoperate. But DCC
deliberately does not specify everything about a model train control
system.

The DCC standard is given in two documents:
# Standard S-9.1, the DCC Electrical Standard, defines how bits are
encoded on the rails for transmission.
# Standard S-9.2, the DCC Communication Standard, defines the packets
that carry information.

Conceptual Specification of model train controller:
A conceptual specification allows us to understand the system a little
better. We will use the experience gained by writing the conceptual
specification to help us write a detailed specification to be given to a
system architect.



A train control system turns commands into packets. A command comes
from the command unit while a packet is transmitted over the rails.
Commands and packets may not be generated in a 1-to-1 ratio.
Sometimes command units should resend packets in case a packet is
dropped during transmission.

There are two major subsystems in model train controller: the command
unit and the train-board component as shown in Figure 1.16. Each of
these subsystems has its own internal structure. The basic relationship
between them is illustrated in Figure 1.17, shown as a UML collaboration
diagram. The command unit and receiver are each represented by
objects; the command unit sends a sequence of packets to the train’s
receiver, as illustrated by the arrow. The notation on the arrow provides
both the type of message sent and its sequence in a flow of messages;
since the console sends all the messages, the arrow’s messages are
numbered as 1…n. The messages are carried over the track.

The command unit and receiver are further broken down into their major
components.
The console needs to perform three functions: read the state of the front
panel on the command unit, format messages, and transmit messages.
The train receiver must also perform three major functions: receive the
message, interpret the message (taking into account the current speed,
inertia setting, etc.) and actually control the motor.
The UML class diagram for the above is shown in Figure 1.18. The basic
characteristics of these classes are:
# The Console class describes the command unit’s front panel, which
contains the analog knobs and hardware to interface to the digital parts
of the system.
# The Formatter class includes behaviors that know how to read the
panel knobs and creates a bit stream for the required message.
# The Transmitter class interfaces to analog electronics to send the
message along the track.



There will be one instance of the Console class and one instance of each
of the component classes, as shown by the numeric values at each end of
the relationship links. We have also shown some special classes that
represent analog components, ending the name of each with an asterisk:
# Knobs* describes the actual analog knobs, buttons, and levers on the
control panel.
# Sender* describes the analog electronics that send bits along the track.
Likewise, the Train makes use of three other classes that define its
components:
# The Receiver class knows how to turn the analog signals on the track
into digital form.
# The Controller class includes behaviors that interpret the commands
and figures out how to control the motor.
# The Motor interface class defines how to generate the analog signals
required control the motor.
We define two classes to represent analog components:
# Detector* detects analog signals on the track and converts them into
digital form.
# Pulser* turns digital commands into the analog signals required to
control the motor speed.
We have also defined a special class, Train set, to help us remember that
the system can handle multiple trains (up to t trains).

b. How would the ARM status word be set after the operation:  2-3 ? (3)

2 in 32-bit hex = 0x2
-3 in 32-bit hex (2’s complement form) = 0xFFFFFFFD
So, 2-3 = 0x2 + 0xFFFFFFFD = 0xFFFFFFFF = -1
Only Negative flag will be set.

N: 1



Z: 0
C: 0
V: 0

6.
a. Explain with a neat diagram the bus with a DMA controller. (7)

Standard bus transactions require the CPU to be in the middle of every read
and write transaction. However, there are certain types of data transfers in
which the CPU does not need to be involved. For example, a high-speed I/O
device may want to transfer a block of data into memory. While it is possible to
write a program that alternately reads the device and writes to memory, it
would be faster to eliminate the CPU’s involvement and let the device and
memory communicate directly. This capability requires that some unit other
than the CPU be able to control operations on the bus.

Direct memory access (DMA) is a bus operation that allows reads and writes
not controlled by the CPU. A DMA transfer is controlled by a DMA controller,
which requests control of the bus from the CPU. After gaining control, the
DMA controller performs read and write operations directly between devices
and memory.

Figure below shows the configuration of a bus with a DMA controller. The DMA
requires the CPU to provide two additional bus signals:
■ The bus request is an input to the CPU through which DMA controllers ask
for ownership of the bus.
■ The bus grant signals that the bus has been granted to the DMA controller.

A device that can initiate its own bus transfer is known as a bus master.
Devices that do not have the capability to be bus masters do not need to
connect to a bus request and bus grant. The DMA controller uses these two
signals to gain control of the bus using a classic four-cycle handshake. The bus
request is asserted by the DMA controller when it wants to control the bus,
and the bus grant is asserted by the CPU when the bus is ready.

The CPU will finish all pending bus transactions before granting control of the
bus to the DMA controller. When it does grant control, it stops driving the



other bus signals: R/W, address, and so on. Upon becoming bus master, the
DMA controller has control of all bus signals (except, of course, for bus request
and bus grant).
Once the DMA controller is bus master, it can perform reads and writes using
the same bus protocol as with any CPU-driven bus transaction. Memory and
devices do not know whether a read or write is performed by the CPU or by a
DMA controller.

After the transaction is finished, the DMA controller returns the bus to the CPU
by deasserting the bus request, causing the CPU to deassert the bus grant.

The CPU controls the DMA operation through registers in the DMA controller.

A typical DMA controller includes the following three registers:
■ A starting address register specifies where the transfer is to begin.
■ A length register specifies the number of words to be transferred.
■ A status register allows the DMA controller to be operated by the CPU.

The CPU initiates a DMA transfer by setting the starting address and length
registers appropriately and then writing the status register to set its start
transfer bit. After the DMA operation is complete, the DMA controller
interrupts the CPU to tell it that the transfer is done.

What is the CPU doing during a DMA transfer? It cannot use the bus. As
illustrated in Figure 4.10, if the CPU has enough instructions and data in the
cache and registers, it may be able to continue doing useful work for quite
some time and may not notice the DMA transfer. But once the CPU needs the
bus, it stalls until the DMA controller returns bus mastership to the CPU.

To prevent the CPU from idling for too long, most DMA controllers implement
modes that occupy the bus for only a few cycles at a time. For example, the
transfer may be made 4, 8, or 16 words at a time. As illustrated in Figure 4.11,
after each block, the DMA controller returns control of the bus to the CPU and
goes to sleep for a preset period, after which it requests the bus again for the
next block transfer.



b. Write ARM assembly code to implement the following C assignment. (3)
 z = a*(b+c)-d*e;

ADR r4,b ; get address for b
LDR r0,[r4] ; get value of b
ADR r4,c ; get address for c
LDR r1,[r4] ; get value of c
ADD r2,r0,r1 ; compute partial result: (b+c)
ADR r4,a ; get address for a
LDR r0,[r4] ; get value of a
MUL r2,r2,r0 ; compute partial result: a*(b+c)
ADR r4,d ; get address for d
LDR r0,[r4] ; get value of d
ADR r4,e ; get address for e
LDR r1,[r4] ; get value of e
MUL r3,r0,r1 ; compute partial result: d*e
SUB r2, r2, r3 ; compute the final result
ADR r4,y ; get address for z
STR r2,[r4] ; store value of z at proper location

7.
a. What is interrupt? Discuss its mechanism, with a neat diagram. (7)

Interrupt is a mechanism that allows a device to request service from the CPU.
The interrupt mechanism allows devices to signal the CPU and to force
execution of a particular piece of code. When an interrupt occurs, the program
counter’s value is changed to point to an interrupt handler routine (also
commonly known as a device driver) that takes care of the device: writing the
next data, reading data that have just become ready, and so on. The interrupt
mechanism of course saves the value of the PC at the interruption so that the
CPU can return to the program that was interrupted. Interrupts therefore
allow the flow of control in the CPU to change easily between different



contexts, such as a foreground computation and multiple I/O devices. To allow
parallelism, we need to introduce interrupt mechanism into the CPU.

In the following example, we repeatedly read a character from an input device
and write it to an output device. We assume that we can write C functions that
act as interrupt handlers. Those handlers will work with the devices in much
the same way as in busy-wait I/O by reading and writing status and data
registers. The main difference is in handling the output—the interrupt signals
that the character is done, so the handler does not have to do anything.
We will use a global variable achar for the input handler to pass the character
to the foreground program. Because the foreground program doesn’t know
when an interrupt occurs, we also use a global Boolean variable, gotchar, to
signal when a new character has been received. The code for the input and
output handlers follows:

void input_handler() { /* get a character and put in global */
achar = peek(IN_DATA); /* get character */
gotchar = TRUE; /* signal to main program */
poke(IN_STATUS,0); /* reset status to initiate next transfer */

}
void output_handler() { /* react to character being sent */
/* don't have to do anything */
}

The main program is reminiscent of the busy-wait program. It looks at gotchar
to check when a new character has been read and then immediately sends it
out to the output device.

main() {
while (TRUE) { /* read then write forever */

if (gotchar) { /* write a character */
poke(OUT_DATA,achar); /* put character in device */
poke(OUT_STATUS,1); /* set status to

initiate write */
gotchar = FALSE; /* reset flag */
}

}
}

It should be noted that the use of interrupts has made the main program
somewhat simpler. But this program design still does not let the foreground
program do useful work.

Interrupt based I/O programming with buffers:
This method is an extension of the interrupt based I/O programming. In this,
we use a more sophisticated program design to let the foreground program
work completely independently of input and output. This is achieved by using
buffers.
The following example shows copying characters from input to output with
interrupts and buffers. Usage of buffers eliminated the need to wait for each



character. Rather than reading a single character and then writing it, the
program performs reads and writes independently. The read and write
routines communicate through the following global variables:

■ A character string io_buf will hold a queue of characters that have
been read but not yet written.
■ A pair of integers buf_start and buf_end will point to the first
and last characters read.
■ An integer error will be set to 0 whenever io_buf overflows.

The global variables allow the input and output devices to run at different
rates. The queue io_buf acts as a wraparound buffer—we add characters to
the tail when an input is received and take characters from the tail when we
are ready for output. The head and tail wrap around the end of the buffer
array to make most efficient use of the array. Here is the situation at the start
of the program’s execution, where the tail points to the first available
character and the head points to the ready character. As seen below, because
the head and tail are equal, we know that the queue is empty.

When the first character is read, the tail is incremented after the character is
added to the queue, leaving the buffer and pointers looking like the following:

When the buffer is full, we leave one character in the buffer unused. As the
next figure shows, if we added another character and updated the tail buffer
(wrapping it around to the head of the buffer) we would be unable to
distinguish a full buffer from an empty one.

Here is what happens when the output goes past the end of io_buf:

The following code provides the declarations for the above global variables and
some service routines for adding and removing characters from the queue.
Because interrupt handlers are regular code, we can use subroutines to
structure code just as with any program.

#define BUF_SIZE 8
char io_buf[BUF_SIZE]; /* character buffer */
int buf_head = 0, buf_tail = 0; /* current position in
buffer */
int error = 0; /* set to 1 if buffer ever overflows */
void empty_buffer() { /* returns TRUE if buffer is empty */

buf_head == buf_tail;
}

void full_buffer() { /* returns TRUE if buffer is full */



(buf_tail+1) % BUF_SIZE == buf_head ;
}

int nchars() { /* returns the number of characters in the
buffer */

if (buf_head >= buf_tail) return buf_tail – buf_head;
else return BUF_SIZE + buf_tail – buf_head;

}

void add_char(char achar) { /* add a character to the buffer
head */
io_buf[buf_tail++] = achar;
/* check pointer */
if (buf_tail == BUF_SIZE)

buf_tail = 0;
}

char remove_char() { /* take a character from the buffer head
*/
char achar;
achar = io_buf[buf_head++];
/* check pointer */
if (buf_head == BUF_SIZE)

buf_head = 0;
}

Assume that we have two interrupt handling routines defined in C,
input_handler for the input device and output_handler for the output device.
These routines work with the device in much the same way as did the busy-
wait routines. The only complication is in starting the output device: If io_buf
has characters waiting, the output driver can start a new output transaction by
itself. But if there are no characters waiting, an outside agent must start a new
output action whenever the new character arrives. Rather than force the
foreground program to look at the character buffer, we will have the input
handler check to see whether there is only one character in the buffer and
start a new transaction.

Here is the code for the input handler:
#define IN_DATA 0x1000
#define IN_STATUS 0x1001
void input_handler() {

char achar;
if (full_buffer()) /* error */

error = 1;
else { /* read the character and update pointer */

achar = peek(IN_DATA); /* read character */
add_char(achar); /* add to queue */

}

poke(IN_STATUS,0); /* set status register back to 0 */
/* if buffer was empty, start a new output
transaction */

if (nchars() == 1) { /* buffer had been empty until this
interrupt */

poke(OUT_DATA,remove_char()); /* send character */
poke(OUT_STATUS,1); /* turn device on */

}
}

#define OUT_DATA 0x1100
#define OUT_STATUS 0x1101
void output_handler() {



if (!empty_buffer()) { /* start a new character */
poke(OUT_DATA,remove_char()); /* send character */
poke(OUT_STATUS,1); /* turn device on */

}
}

The foreground program does not need to do anything—everything is
taken care of by the interrupt handlers. The foreground program is free
to do useful work as it is occasionally interrupted by input and output
operations. The following sample execution of the program in the form
of a UML sequence diagram shows how input and output are interleaved
with the foreground program. (We have kept the last input character in
the queue until output is complete to make it clearer when input
occurs.) The simulation shows that the foreground program is not
executing continuously, but it continues to run in its regular state
independent of the number of characters waiting in the queue.

b. Explain the UML class diagram for signal and time out events. (3)

The class diagram below shows the stereotype <<signal>> for a
mouse click event. The attributes for the class are leftorright button
that specifies which button is clicked, and the (x,y) coordinates of the
mouse pointer.

The timer class is shown below. The attribute for this is the counter
value.



8.
a) Explain the following with diagram. (7) [*]

i. Two-level cache system

Modern CPUs may use multiple levels of cache, typically two, as shown
in figure below. The first-level cache (commonly known as L1 cache) is
closest to the CPU.
The second-level cache (L2 cache) feeds the first-level cache, and so on.
The second-level cache is much larger but is also slower. If h1 is the first-
level hit rate and h2 is the rate at which access hit the second-level cache
but not the first-level cache, then the average access time for a two-level
cache system is:

tav = h1tL1 + h2tL2 + (1 - h1 - h2)tmain

ii. Direct-mapped cache

The simplest way to implement a cache is a direct-mapped cache, as
shown in Figure below. The cache consists of cache blocks, each of
which includes a tag to show which memory location is represented by
this block, a data field holding the contents of that memory, and a
valid tag to show whether the contents of this cache block are valid.
An address is divided into three sections. The index is used to select
which cache block to check. The tag is compared against the tag value
in the block selected by the index. If the address tag matches the tag
value in the block, that block includes the desired memory location. If
the length of the data field is longer than the minimum addressable
unit, then the lowest bits of the address are used as an offset to select
the required value from the data field. Given the structure of the cache,
there is only one block that must be checked to see whether a location
is in the cache—the index uniquely determines that block. If the
access is a hit, the data value is read from the cache. Writes are



slightly more complicated than reads because we have to update main
memory as well as the cache. There are several methods by which we
can do this. The simplest scheme is known as write-through—every
write changes both the cache and the corresponding main memory
location (usually through a write buffer). This scheme ensures that the
cache and main memory are consistent, but may generate some
additional main memory traffic. We can reduce the number of times
we write to main memory by using a write-back policy: If we write
only when we remove a location from the cache, we eliminate the
writes when a location is written several times before it is removed
from the cache.

The direct-mapped cache is both fast and relatively low cost, but it
does have limits in its caching power due to its simple scheme for
mapping the cache onto main memory. Consider a direct-mapped
cache with four blocks, in which locations 0, 1, 2, and 3 all map to
different blocks. But locations 4, 8,12,…all map to the same block as
location 0;locations 1, 5, 9,13,…all map to a single block;and so on. If
two popular locations in a program happen to map onto the same
block, we will not gain the full benefits of the cache. This can create
program performance problems.

iii. Set-associative cache

The limitations of the direct-mapped cache can be reduced by going to
the
set-associative cache structure shown in Figure below. A set-associative
cache is characterized by the number of banks or ways it uses, giving an
n-way set-associative cache. A set is formed by all the blocks (one for
each bank) that share the same index. Each set is implemented with a
direct-mapped cache. A cache request is broadcast to all banks
simultaneously. If any of the sets has the location, the cache reports a hit.
Although memory locations map onto blocks using the same function,
there are n separate blocks for each set of locations. Therefore, we can
simultaneously cache several locations that happen to map onto the same
cache block. The set associative cache structure incurs a little extra



overhead and is slightly slower than a direct-mapped cache, but the
higher hit rates that it can provide often compensate.

The set-associative cache generally provides higher hit rates than the
direct mapped cache because conflicts between a small number of
locations can be resolved within the cache. The set-associative cache is
somewhat slower, so the CPU designer has to be careful that it doesn’t
slow down the CPU’s cycle time too much. A more important problem
with set-associative caches for embedded program design is
predictability. Because the time penalty for a cache miss is so severe, we
often want to make sure that critical segments of our programs have good
behavior in the cache. It is relatively easy to determine when two memory
locations will conflict in a direct-mapped cache. Conflicts in a set-
associative cache are more subtle, and so the behavior of a set-associative
cache is more difficult to analyze for both humans and programs.

b) How would the ARM status word be set after the operation: 2^31 - 1 + 1 ?(3)

2^31-1 in 32-bit hex = 0x7fffffff
+1 in 32-bit hex = 0x1
So, (2^31-1)+1 = 0x7fffffff + 0x1 = 0x80000000 = -2^31
Adding 2 positive numbers giving a negative number output, hence
an overflow. Since the result is negative, N will also be set.

N: 1
Z: 0
C: 0
V: 1


