Scheme and Solution for C£NET and Programming
| Internal Sept 2016

1. What are building blocks of .NET platform? Give the relationship between .NET runtime
layer and class library? -10M
Common language runtime or CLR: 2M

The primary role of the CLR is to locate, load, and manage .NET types on your behalf.
The CLR also takes care of a number of low-level details such as memory management
and performing security checks.

Common Type System or CTS: 2M
The CTS specification fully describes all possible data types and programming constructs
supported by the runtime, specifies how these entities can interact with each other, and

details how they are represented in the .NET metadata format.

Common Language Specification or CLS: 1M
The CLS is a related specification that defines a subset of common types and
programming constructs that all .NET programming languages can agree on.
Thus, if you build .NET types that only expose CLS-compliant features, you can rest
assured that all .NET-aware languages can consume them.

TheRoleof theBase ClassLibraries-2M
The .NET platform provides a base class library that is avallable to all .NET
programming languages.
Base class library encapsulate various primitives such as threads, file input/output (1/0),
graphical rendering, and interaction with various external hardware devices, but it aso
provides support for a number of services required by most real-world applications.
For example, the base class libraries define types that facilitate database access, XML

mani pulation, programmatic security, and the construction of web-enabled front ends.

The relationship between the CLR, CTS, CLS, and the base class library, as shown in Figure.-
3M

The Base Class Library

Data Access Windows Forms Security XML /SOAP

Threading File I/0 Web Forms (et al.)

The Common Language Runtime

Common Type System Common Language Specification

The CLR, CTS, CLS, and base class library relationship

2. List the functions associated with System.Object class and override any two methods -10M

THE MASTER NODE: SYSTEM.OBJECT

« In .NET, every data type is derived from a commaon base class: System.Object.

+* The Object class defines a common set of members supported by every type in the .NET framework.
* When we create a class, it is implicitly derived from System.Object.

+ For example, the following declaration is common way to use.

class Test class Test : System.Object
{ {

But, internally, it means that

1 1

+ System.Object defines a set of instance-level{non-static) and class-level(static) members.
+ Some of the instance-level members are declared using the virtual keyword and can therefore be
overridden by a derived-class:

/¢ The structure of Systermn.Object class
namespace System

i

public class Object
{
public Object();
public virtual Boolean Equals{Object obj);
public virtual Int32 GetHashCode();
public Type GetType();
pubilic virtual String ToString();
protected virtual void Finalize();
protected Object MemberwiseClone();
public static bool Equals{object objA, object obiB);
public static bool ReferenceEquals{object objA, object objB);

Any two methods 3* 2=6M
OVERRIDING SOME DEFAULT BEHAVIORS OF SYSTEM.OBJECT
+ In many of the programs, we may want to override some of the behaviors of System.Object.
+ Overriding is the process of redefining the behavior of an inherited virtual member in a derived
class.
* We have seen that System.Object class has some virtual methods like ToString(), Equals() etc.
These can be overridden by the programmer.

OVERRIDING TOSTRING()

+ Consider the following code:

using System;
using System.Text;
class Person

{

public string Name, SSN;
public byte age;

public Person(string n, string s, byte a)

i
MName = n;
55N = s5;
age = a;

¥

public Person(}{ }

/S Overriding System. Object. ToString(’)
public override string ToString()

i
StringBuilder sb = new StringBuilder();
sb.AppendFormat("[Name={0}", this. Name);
sb.AppendFormat(” SSN={0}", this.55N);
sb.AppendFormat(” Age={0%}]", this.age)};
return sb.ToString();

}

public static void Main{)

{
Person pl = new Person("Ram”, "11-12", 25);
Console.WriteLine("p1 is {0}", p1.ToString());

}

pl is [Name=Ram 55N=11-12 Age=25]

+ In the above example, we have overridden ToString() method to display the contents of the object
in the form of tuple.

* The System.Text.StringBuilder is class which allows access to the buffer of character data and it is a
more efficient alternative to C# string concatenation.

OVERRIDING EQUALS()
+« By default, System.Object.Equals() returns true only if the two references being compared are
referencing same object in memory.

+ But in many situations, we are more interested if the two objects have the same content. Consider
an example:
using System;
class Person

{

public string Name, SSN;
public byte age;

public Person{string n, string s, byte a)

i
Mame = n;
S5N = 5;
age = a;

by

public Person(}{ }

public override bool Equals{object ob)

i
if (ob !'= null &% ob is Person)
Person p = (Person)ob;
if {(p.Name == this.Name && p.55N == this.55N && p.age == this.age)
return true;
}
return false;
¥
public static void Main()
i
Person pl = new Person{"Ram”, "11-12", 25});
Person p2 = new Person("John", "11-10", 20};
Person p3 = new Person("Ram", "11-12", 25};
Person pd = p2;
iffpl.Equals{p2))
Console.WriteLine("pl and p2 are same"};
else
Console. WriteLine("pl and p2 are not same");
if{pl.Equals{p3))
Console.WriteLine{"pl and p3 are same™};
else
Console.WriteLine{"pl and p3 are not same");
if{p2.Equals{p4)) Jfcompares based on content, not on reference
Console.WriteLine("p4 and p2 are same");
else
Console.WriteLine{"p4 and p2 are not same");
by

3. a. Write a C# program to accept an inter as command line parameter from the user and check
whether it is prime number or not-5M

[* C# Program to Check Whether the Given Number is a Prime number if so then
Display its Largest Factor */

using System;

namespace example

{
class prime
{
public static void Main()
{
Console.Write("Enter a Number : ");- -1M
int num;
num = Convert. Tolnt32(Console.ReadLine()); -1M
int k;
k=0;
for (inti =1; 1 <= num; i++) -2M
{
if (num%i==0)
{
k++;
}
}
if (k==2) -IM
{

Console.WriteLine("Entered Number is a Prime Number and the

Largest Factor is{0}",num);

}
}
}

}

else
{
Console.WriteLine("Not a Prime Number");

}
Console.ReadLine();

3. b. Write a short note on enumeration and explain their usage with example-5M
Definition and explanation -2M

The enum keyword is used to declare an enumeration, a distinct type that consists of a set of
named constants called the enumerator list.

Usualy it is best to define an enum directly within a namespace so that all classesin the
namespace can access it with equal convenience. However, an enum can al so be nested within a
class or struct.

By default, the first enumerator has the value 0, and the value of each successive enumerator is
increased by 1. For example, in the following enumeration, Sat is0, Sunis1, Monis 2, and so
forth.

enum Days {Sat, Sun, Mon, Tue, Wed, Thu, Fri};
Example -3M
public class Enuniest

{
enum Days { Sun, Mn, Tue, Wed, Thu, Fri, Sat };

static void Min()

{
int x = (int)Days. Sun;
int y = (int)Days.Fri;
Consol e. WitelLine("Sun = {0}", X);
Console.WiteLine("Fri = {0}", vy);
}
}
[* CQutput:

Sun =0
Fri =5

5. Explain four method parameter modifiers with example-10M

‘in’ parameter 2.5M
METHOD PARAMETER MODIFIERS
* Normally methods will take parameter. While calling a method, parameters can be passed in
different ways.
s C# provides some parameter modifiers as shown:

Parameter Meaning
Modifier

(none) If a parameter is not attached with any modifier, then parameter’s value is passed
to the method. This is the default way of passing parameter. (call-by-value)

out The output parameters are assigned by the called-method.

ref The value is initially assigned by the caller, and may be optionally reassigned by
the called-method

params This can be used to send variable number of arguments as a single parameter,
Any method can have only one params modifier and it should be the last
parameter for the method.

THE DEFAULT PARAMETER PASSING BEHAVIOR

+ By default, the parameters are passed to a method by-value.

* If we do not mark an argument with a parameter-centric modifier, a copy of the data is passed into
the method.

* S0, the changes made for parameters within a method will not affect the actual parameters of the
calling method.

= Consider the following program:

using System;
class Test
{
public static void swap(int x, int y)
{
int temp=x;
X=y;
y=temp;
¥
public static void Main{)
i
int x=5,y=20;
Console. WriteLine("Before: x={0}, y={1}", x, ¥);
swap(x,y);
Console. WriteLine("After: x={0}, y={1}", %, ¥);
¥
e
Qulputs

Before: x=5, y=20
After : x=5, y=20

‘out’ parameter -2.5M
out KEYWORD
* Qutput parameters are assigned by the called-method.
* In some of the methods, we need to return a value to a calling-method. Instead of using return
statement, C# provides a modifier for a parameter as out.
Consider the following program:

using System;

class Test
{
public static void add(int x, int y, out int z)
i
Z=X+Y,;
¥
public static void Main{)
i
int x=5,y=20, z;
add(x, y, out z);
Console. WriteLine("z={0}", z);
1
¥
Quiput;
2=25

+ Useful purpose of out: It allows the caller to obtain multiple return values from a single method-
invocation.

Consider the following program:
using System;

class Test
i
public static void MyFun{out int x, out string y, out bool z)
i
x=5;
y="Hello, how are you?";
z=true;
by
public static woid Main()
{
int a;
string str;
bool b;
MyFun{out a, out str, out b);
Console. WriteLine("integer={0%} ", a);
Console . WriteLine("string={07}", str);
Console WriteLine("boolean={0} ", b);
H
¥
Dutput;
integer=5,

string=Hello, how are you?
boolean=true

‘ref” parameter — 2.5M
ref KEYWORD
+ The value is assigned by the caller but may be reassigned within the scope of the method-call.
* These are necessary when we wish to allow a method to operate on (and usually change the values
of} various data points declared in the caller's scope.
Differences between output and reference parameters:
— The output parameters do not need to be initialized before sending to called-method.
Because it is assumed that the called-method will fill the value for such parameter.
— The reference parameters must be initialized before sending to called-method.
Because, we are passing a reference to an existing type and if we don't assign an initial value,
it would be equivalent to working on NULL pointer.
*« Consider the following program:
using System;

class Test
{
public static void MyFun{ref string s)
{
s=s.Tolpper();
by
public static void Main()
{
string s="hello";
Console. WriteLine("Before: {0}",s);
MyFun{ref s);
Console. WriteLine("After:{0}",5);
s
¥
Quipyts
Before: hello

After: HELLO

‘params’ parameter -2.5M
#* From the above example, we can observe that for params parameter, we can pass an array or
individual elements.

We can use params even when the parameters to be passed are of different types.
= Consider the following program:

using System;

class Test

1

public static void MyFun{params object[] arr)
for{int i=0; i<arr.Length; i++)

if{arr{i] is Int32)
Console WriteLine("{0} is an integer”, arr{i]);
else if{arr[i] is string)
Console WriteLine("{0} is a string"”, arrli]};
else if{arr[i] is bool)
Console WriteLine("{0} is a boolean" arr[i]);

¥
¥
public static void Main()
i
int x=5;
string s="hello";
bool b=true;
MyFun(b, x, s);
3

Quipyts
True is a Boolean
5 is an integer
hello is a string

6. How to build C# application using cse.exe?-10M
-4M
To build asimple single file assembly named TestApp.exe using the C# command-line compiler
and Notepad. First, you need some source code. Open Notepad and enter the following:
Il A simple C# application.
using System;
class TestApp

{
public static void Main()

{
ConsoleWriteLineg(" Testing! 1, 2, 3");
}
}

Once we have finished, save the file in a convenient location (e.g., C:\CscExample) as
TestApp.cs.
Each possibility is represented by a specific flag passed into csc.exe as a command-line

parameter see below table which are the core options of the C# compiler.

Output-centric Options of the C# Compiler

Option Meaning in Life

fout This option is used to specify the name of the assembly to be created. By
default, the assembly name is the same as the name of the initial input *. cs
file (in the case of a *.d11) or the name of the type containing the program’s
Main() method (in the case of an *.exe).

/target:exe This option builds an executable console application. This is the default file
output type, and thus may be omitted when building this application type.

/target:library This option builds a single-file *.d11 assembly.

/target:module This option buflds a module. Modules are elements of multifile assemblies

(fully described in Chapter 11).

/target:winexe Although you are free to build Windows-based applications using the
/target:exe flag, the /target:winexe flag prevents a console window from
appearing in the background.

To compile TestApp.cs into a console application named TestApp.exe enter

csc /tar get:exe TestApp.cs
C# compiler flags support an abbreviated version, such as /t rather than /tar get
csc /t:exe TestApp.cs
default output used by the C# compiler, so compile TestApp.cs ssmply by typing

csc TestApp.cs
TestApp.exe can now be run from the command line a shows o/p as,
C:\TestApp
Testing! 1,2, 3
-3M

Referencing External Assemblies
To compile an application that makes use of types defined in a separate .NET assembly.
Reference to the System.Console type mscorlib.dll is automatically referenced during the
compilation process.
To illustrate the process of referencing external assemblies the TestApp application to
display windows Forms message box.
At the command line, you must inform csc.exe which assembly contains the *“used”
namespaces.
Given that you have made use of the MessageBox class, you must specify the
System.Windows.Forms.dll assembly using the /reference flag (which can be
abbreviated to /r):
csc /r: System.Windows.Forms.dll testapp.cs
-3M
Compiling Multiple Sour ce Files with csc.exe
Most projects are composed of multiple *.cs files to keep code base a bit more flexible. Assume
you have class contained in a new file named HelloM sg.cs:
/I The HelloM essage class
using System;
using System.Windows.Forms;
class HelloM essage

{
public void Speak(){

MessageBox.Show("Hello...");

}
}

Now, create TestApp.csfile & write below code
using System;
class TestApp

{
public static void Main()

{

Console.WriteLine("Testing! 1, 2, 3");
HelloMessage h = new HelloMessage();

h.Speak();
}
}

Y ou can compile your C# files by listing each input file explicitly:

csc /r:System.Windows.Forms.dll testapp.cs hellomsg.cs

Asan dternative, csc/r:System.Windows.Forms.dil *.cs

7. List six differences between value type and reference type
Write a program to illustrate value type containing reference type-10M

Each difference 0.5*6= 3M

VALUE TYPES

REFERENCE TYPES

Allocated on the stack

Allocated on the managed heap

Variables die when they fall out of the defining
scope

Variables die when the managed heap is
garbage collected

Variables are local copies

Variables are pointing to the memory occupied
by the allocated instance

Variable are passed by value

\Variables are passed by reference

Variables must directly derive from
System.ValueType

Variables can derive from any other type as
long as that type is not "sealed”

Value types are always sealed and cannot be
extended

Reference type is not sealed, so it may
function as a base to other types.

Value types are never placed onto the heap and
therefore do not need to be finalized

Reference types finalized before garbage
collection occurs

= Consider the following code:
class TheRefType
{

public string x;
public TheRefType(string s)

{x=5}

}

struct InnerRef

{
public TheRefType refType;
public int structData;
public InnerRef{string s)
1

refType=new TheRefType(s);
structData=9;

¥

¥

class ValRef

{
public static int Main(string[] args)
{
Console. WriteLine("making InnerRef type and setting structData to 666");
InnerRef valWithRef=new InnerRef("initial value");
valWithRef.structData=666;
Console. WriteLine("assigning valWithRef2 to valWithRef");
InnerRef valWithRef2;
valWithRef2=valWithRef;
Console.WriteLine({"changing all values of valWithRef2"});
valWithRef2.refType.x="1 AM NEW";
valWithRef2.structData=777;
Console. WriteLine{"values after change");
Console.WriteLine{"valWithRef.refType.x is {0}", valWithRef.refType.x);
Console.WriteLine("valWithRef2.refType.x is {0}", valWthRef2.refType.x);
Console. WriteLine{"valWithRef.structData is {0}", valWithRef.structData);
Console.WriteLine({"valWithRef2 .structData is {0}", valWithRef2.structData);
¥

}

Output:

making InnerRef type and setting structData to 666
assigning valWithRef2 to valWithRef
changing all values of valWithRef2

values after change
valWithRef.refType.x is I AM NEW
valWithRef2.refType.x is I AM NEW
valWithRef.structData is 666
valWithRefl.structData is 777

+ When a value-type contains other reference-types, assignment results in a copy of the references.
In this way, we have 2 independent structures, each of which contains a reference pointing to the
same object in memory i.e. shallow copy.

= When we want to perform a deep copy (where the state of internal references is fully copied into a
new object), we need to implement the ICloneable interface.

Example 4M +Output 2M+ ExplanationIM=-7M

