Q1. (a) List the steps needed to execute the machineinstruction given below in terms of
transfer between the components of processor, memory & some commands ADD LOCA,
RO. Assume the instruction is stored in memory location ‘INSTR’. (6)

_ Transfer the contents of register PC to register MAR

_ Issue a Read command to memory, and then wait until it has transferred the requested word into register
MDR

_ Transfer the instruction from MDR mto IR and decode 1t

_ Transfer the address LOCA from IR to MAR

_ Issue a Read command and wait until MDR is loaded

_ Transfer contents of MDR to the ALU

_ Transfer contents of R0 to the ALU

_ Perform addition of the two operands in the ALU and transfer result into RO

_ Transfer contents of PC to ALU

__Add 1 to operand mn ALU and transfer incremented address to PC.

Memon

[

Lontrol

IR - Proc

ALL

R

n zeneral purose

registers \‘

(b) Brief about performance & itsevaluation process. 4)

Basic Performance Equation:
T=(MN*5)E

Where, T2Performance Parameter

E—>Clock Rate in cycles/sec

N—=>Actnal oumber of instuction execution

S—=Average number of basic steps needed to execute one machine nstmction.
To achieve high performance, N S5<R

Performance Measurement:

The Performance Measure is the time it takes a computer to execute a given benchmark

A non-profit organization called SPEC (System Performance Evaluation Corporation) selects and
publishes representative application program.

Funning time on reference comyputer
SPEC rating=

Running time on computer under test
The Owverall SPEC rating for the computer is given by,
1 1/n

SPEC rating= (II SPECi) |
1=1

Q2. (a)Writethe syntax for basic instruction types and assembly language for the
F=ax?*+bx+c. (8)

The general instruction format 1s: Operation Sourcel Source2, Destination
Symbaolic add instruction: ADD AB.C
The general instruction format is: Operation Source,Destination
Symbolic add instruction: MOVE B.C
ADD AC
The general instruction format is: Operation operand
Symbolic add instruction: LOAD A
ADD B
STORE C
LOAD A MUL X, X MUL X, X, RO
MUL X MUL X, A MUL RO, A, R1
MUL X MUL X, B MUL X, B, R2
STORE RO ADDA, B ADD R1, R2,R3
LOAD B ADDB, C ADDR3,C, F
MUL X MOV C, F
ADD C
ADD RO

MOV F

(b) Define Bus. 2

A group of lines that serves as the connection path to several devices is called a Bus.
A Bus may be lines or wires or one bit per line.
The lines carry data or address or control signal.

There are 2 types of Bus structures. They are
Single Bus Structure
Multiple Bus Structure

Q3. Define Addressing modes and explain any 5 of itstypes. (10)

1. Register addressing made - The operand ic the contents of a processor register: the neme
(address) of the register s @iven in the instruction.

Example: MOVE R1,R2

T'his mstruction copies the contents of register R2 to R1.

2. Absolute addressing mode - The cperand is in a memory location; the address of this location
1s given explhicitly in the instruction. (In some assembly languages. this mode is called Direct.)
Example: MOVE LOC,R2
This instruction copies the contents of memory location of LOC to register R2.

3. Immediate addressing mode The operand is given explicitly in the instruction.

Example: MOVE #200, RO

The above statement places the value 2()) in the rezister RO. A common convention 13 0
use the sharp sign (#) in front of the value to indicate that this value is to be used as an immediate
operand.

INDIRECTION AND POINTERS

In the addressing modes that follow, the instruction does not give the operand or its address
exphicitly. Instead. it provides information from which the memory address of the operand can be
determined. We refer to this address as the effective address (EA) of the operand.

4. Indirect addressing mode - The effective address of the operand 1s the contents of a register or
memory location whose address appears in the nstruction.

Example Add (R2),R0
Register R2 1s used as a pointer to the numbers in the list, and the operands are accessed indirectly
through R2. The initalization section of the program loads the counter value n from memory
location N into Rl and uses the Immediate addressing mode to place the address value NUM 1,
which 1s the address of the first number in the list, into R2.

INDEXING AND ARRAY
It is useful in dealing with lists and arrays.
5. Index mode - The effective address of the operand 1s generated by adding a constant valug to
the contents of a register.
Where X denotes the constant value contamed in the instruction and Ri is the name of the
register involved. The effective address of the operand is given by EA = X + [Ri]. The contents of
the index register are not changed in the process of gencrating the effective address.

Example : EA= 20+1000=1020

6.Relative mode - The effective address is determined by the Index mode using the program
counter in place of the general-purpose regaster Ri.

This mode can be used to access data operands. But. its most common use is to specify the target
address in branch instructions, An instruction such as Branch>(LOOP causes program
execution to go to the branch target location identified by the name LOOP if the branch condition
is satisfied, This location can be computed by specifying it as an offset from the current value of
the program counter. Since the branch target may be either before or after the branch instruction,
the offset is given as a signed number.

Auto-increment mode:

e The Effective Address of the operand is the contents of a register in the

instruction.

e After accessing the operand, the contents of this register is automatically

incremented to point to the next item in the list.
Mode Assembler syntax Addressing Function

Auto-mcrement (Ri)+ EA=[Ru1];
Increment Ri
Auto-decrement mode:

e The Effective Address of the operand is the contents of a register i the

mstruction.

e After accessing the operand, the contents of this register is automatically

decremented to point to the next item in the list.
Mode Assembler Syntax Addressing Function

Auto-decrement -(R1) EA=[Ri]:
Decrement Ry

Q4. (a) Define Assembler directives & list the assembler directives used in assembly
language.(6)

There are some instructions in the assembly language program which are not a
part of processor instruction set. These instructions are instructions to the assembler,
linker, and loader. These are referred to as pseudo-operations or as assembler
directives. The assembler directives enable we to control the way in which a program
assembles and lists. They act during the assembly of a program and do not generate
any executable machine code.

The assemble language requires assembler directives for performing following
basic functions.

* To indicate starting location of the memory where the data block is stored
and starting location of the memory where code is stored.

e To define different types of variables or to set aside one or more storage
locations of corresponding data type in memory.

e To indicate the assembler about the values of the variables.
* To indicate start and end of subroutine program.
ORIGIN : This assembler directive tells assembler that where to place the data block

in the memory or where to start loading of object program in the memory. In short,
the ORIGIN directive specifies the starting memory locations for data and object code.

DB, DW, DD, DQ, and DT : These directives are used to define different types of
variables, or to set aside one or more storage locations of corresponding data type in
memory. These are known as data control directives. Their definitions are as follows :

DB - Define Byte
DW - Define Woru
DD - Define Doubleword
DQ - Define Quadword
DT - Define Ten Bytes
Example :
AMOUNT DB 10H, 20H, 30H, 40H ; Declare array of 4 bytes named
; AMOUNT

DUP : The DUP directive can be used to initialize several locations and to assign
values to these locations.

Format : Name Data_Type Num DUP (value)
Example : TABLE DW 10 DUP (0) ; Reserve an array of 10

EQU : The EQU directive is used to redefine a data name or variable with another
data name, variable, or immediate value. The directive should be defined in a

program before it is referenced.
Formats :
Numeric Equate : aame EQU -
Hoing R : name EQU <string>
Example : ‘
A EQD 200 ; It defines NUM = 200
BE DOU <l b stoog ; It defines as string

PROC : The procedures in the programs can be defined by PROC directive. The
procedure name must be present, must be unique, and must follow naming
conventions for the language. After the PROC directive the term NEAR or FAR are

issued to specify the type of the procedure.
ENDP : ENDP directive is used along with the PROC directive. ENDP defines the

end of the procedure.

(b) Explain about Nested Subroutines. @
Arg: 1+ Subreutine nesh Us a P‘n‘.‘:Cﬂd-U."rq dn wohich a
sulrouting calls ancthes, aumoubine . # o ge) any d-ﬁ_FH‘l‘
3. & s emential Jo zowe fhe wrtents wf dink swgistes

,_inl rorme wthen Joambion befpie mﬂu'a wanohhas Auf:nwl—me
Jre owfuon addowss o g --bcr-«s’r

3. 4 ot Uk not done ,

> s fest
Aubroufing Y& - e
Jhe oddremes nod Jo e saved <n
o ;ﬁ“"ﬂlﬁx en Fovat -tn - tast eul mannA. t
i W& rhay should we pusthed e A N eTe
5. A

~ oy SF
Yoonlas e s Ciﬂf:ltar‘-ﬂd as the akck po b
EI ‘ H:i} ?:n'}m ﬂ % = Qo -’i'a‘i?lf_‘llﬂ_ C:zt[lﬂ_d P{f:mgﬁ. .b'!zj_{‘k i

4. e Coll Jnshruckion puﬁ‘qa

Procoset sack . 1 .
2. +re mhmcﬁdma;:q)sdmm Jorn dhis alae

“hus about the asubreuting meahrg + precessen shack

Jre FC Cordarits unle Jho

Q5. (@) Ilustrate Shift Instructionswith an example. (5)
cad peal shijts

1= soittap _
= Lﬁcoimfit Leha cotant Ask

il ﬁl—hg—%k—ﬁ‘ E I
: Adn‘mx A L’EN.H‘EL count Ast

L. e wealohafh Left Lokapkl H# &, Re
cJEl T —
o R el
pash) [1l ocdovol® .refgev)

(ord At o] ©locolo = }
/v ek —[oTcoeios k- ¥p
Lr:afm'iﬂhjfl- Right Lk R R, Ro
- Re [>T
~[Teorescr _ —{d]
A gt [2looicct I W‘F[Gm .

vacant bit

2t > [Eoreoicd]s o :

e

> Avdhmelic Shit
P;ﬁﬁﬁﬁﬂ\iﬂﬁ\l{# lv.yr
ASHn%rm: Achijrl #2, R

* Fﬁﬁl“rﬁwﬁcwlﬂy—

synkax ¢ AshER A3 Re

& s

AE‘i’J.j:li" |_" _'.H-":-' i E.lf.'l

A Hrnc e Shift et
[c]e{otocoice fe
o < [Eaves] s S e
el Oy
Arstiwoctic Srigt Right AR 1 Re |

Y 4 D100 100 i_av _ |

M2 _.{ ,5|;__¢rn b{t‘ L4
) - O (rve) othich is O
—@m ik s Tij{nmd th bhe

AChiLER I, Ro a “;“’f.”?ﬂ
= ' apn Rt
—sfieop loog— [c] h:cq mc&h‘?nm W;Jamd

gl Jﬁ.{-”p[\ﬁ% @ have .

(b) Writean ALP for that readsoneline of character from keyboard, storesin memory &
echoesit back to display. 5).

Move #LOC RO Initialize pointer register RO to point to the
address of the first location in memory
where the characters are to be stored.

READ TestBit #3,INSTATUS Wait for a character to be entered

Branch=0 READ in the keyboard buffer DATAIN.

MoveByte DATAIN (RO) Transfer the character from DATAIN into
the memory (this clears SIN to 0).

ECHO TestBit #3 0OUTSTATUS Whait for the display to become ready.

Branch=0 ECHO

MoveByte (RHD),DATAOUT Move the character just read to the display
buffer register (this clears SOUT to 0).

Compare #CR,(R0)+ Check if the character just read is CR
{(carringe return). If it is oot CR, then
Branch#0 READ branch back and read another character.

Also, increment the pointer to store the
next character.

Q6. Explain design of fast adderswith necessary diagrams. (10)

A carry-look ahead adder (CLA) or fast adder isatype of adder used in digital logic. A carry-
look ahead adder improves speed by reducing the amount of time required to determine carry

hits.

The carry-look ahead adder calculates one or more carry bits before the sum, which reduces the
wait time to calculate the result of the larger value bits.

One method of speeding up this process by eliminating inter stage carry delay is
called lookahead-carry addition. This method utilizes logic gates- to look at the
lower-order bits of the augend and addend to see if a higher-order carry is to be
generated. It uses two functions : carry generate and carry propagate.

Ay —y

S

| >—

Fig. 2.8 Full adder circuit

Consider the circuit of the full adder shown in Fig. 2.8. Here, we define two
functions : carry generate and carry propagate.

P, = A,@®B
G, = A, B, (Refer Appendix-A for details.)
Inputs Qutputs

A B Ci, Carry Sum
0 o] 0 o o Cr
0 0 1 4] 1 1
4] 1 (4] 0 1 A ——]
0 1 1 1 0 Afj';lr Sum
1 o] 0 1 e
1 o 1 1 o l
1 1 4] 1 0 Cout
1 1 1 1 1

Table 2.1 Truth table for full-adder

Fig. 2.1 Block schematic of
full-adder

Sum = A BC,,+ABT, +AB T,,+ABC,, Or Sum = A@B®C,,

Couy = AB+A C, +B C,,
Consider the circuit of the full adder shown in Fig. 28. Here, we define two
functions : carry generate and carry propagate.

P, = A, @B
G, = A, B, (Refer Appendix-A for details.)
The output sum and carry can be expressed as Y
S = P& ;
Ca = G+PG .I

G, is called a carry generate and it produces on carry when both A, and B, are
one, regardless of the input carry. P, is called a carry propagate because it is term
associated with the propagation of the carry from C, to C,,. Now C,, can be
expressed as a sum of products function of the P and G outputs of alljthe preceding
stages. For example, the carriers in a four stage carry-lookahead adder are defined as

follows :

C1 = Gy + P G,
C1= G|+P‘C|=GI+PIGE+P]FHC“
c"‘=GE+P2CZ=GZ+PIG]+F2P]GD+FIP]PGC1I|

C“ = G] + P} C3
:Cﬁ+P3G2+P3P2G|+FJPZFIG“+P3P:PIPncm
‘*ab}g the uaken (2D -
CiH = gty -t L1 O0 Y G .

= ey (oti+ H;jrﬁ‘f
- G 4+ B €

. - % 3 [I“,‘_ -:}

Gt = Y And P L H‘;ﬂ :
: : foo' Hepguy

B = rowake | . | "
1| i S Aﬂﬂmd Er!mﬂ_:zqa] Z:iac* kg the mﬂiﬁm

HAe we CEM:JH.MQJ b — A g :
opic adde 2bib - parallel addifien dn Gasy O A

Ele = C"]‘[+ PL £

aubli=0
O = Gro+ Fo Co =

C:} — é!'n ‘t-—Pufj -—Fl:Ii-) /SL:LEH ET_”:}I x.i"\ [:1\—_-\‘1

= a1+P1{‘Eﬁ.ﬂ+?DCDF)

= &y + PG + Py o Co
&1'[-_-, F_‘;._ Vﬂ‘UAﬂ n aaf

Cz = OGigt Pl

- g+ Pa Oy +PiG0+ PP Co)

= Gyg+ PaGiy + Faf Go 3 Rl

6&.!.'&3 {3 NﬂL-‘—f LY o ey

G2+ B&
-+ P‘—a_‘P| P‘E C{;"‘)

faq BR&, + B P

g T
B =
":*". e

= G+ ra

AP 3

4+ PaPaP Tolo

= Gs
e humber o, ;jah?_ dn e case U5 uni}mmué
3 48 ¢y, C2y cz,Cy th Sarn, Ub obini A o_btﬂ_\h 9 gﬂ-y_ (:}EDa_a‘
4F roond Qs b -I_’b%'llnn:; H'Eftm" & Yo dﬂ.ﬁa_a;,
x5 ¥z :
- c, l L T T ’ T Xg Yo
4~ B cell <3 B cell c1 i l l
B cell :
* } B cell : o
" 52 ’i‘ ;
Ga| |Ps sl s -’l .
= - 22 - G]! i Go| |Po
Carry-lookahead logic

{b) 4-bit adder

Q7. Perform Non restoring division of 1001/ 11. (20

Q8. (a) Draw the circuitry diagram & perform sequential multiplication 13 & 6.

)
(b) Perform Bit pair recoding multiplication process of 13 & -7. (5)
C(0) A(0000) q(0111)
C n S
oYaYele) T alle |
| o | opooo] otlo |
00D O ' ooll
o | =% Qo 1| i 1]
o LAE ; 00 ms
75 19 1 OO | . [
R3 E oo 1o o] 1ol
. ool Y == s o i
DR
“ iRty E iy OI0DI11D
5 o b1 Ee e
Multiplicand
“H*l o aY o M.“

-Bit Adder o s
Control Logic

Shift Right

o A Q|
Multiplier

Ol110]

I'>

b)

|| ool

—

[o
)

e s B
K AR A
e

i

__a_

I o)

!

— a1

