
Solution and scheme of Evaluation

Q1.Explain SIC/XE machine instruction formats and all addressing modes by clearly indicating

the setting of different flag bits. 10m

Instruction Formats

SIC/XE supports these 4 different instruction formats .

Format 1 (1 byte) 1m

Format 1 (1 byte): contains only operation code.

Format 2 (2 bytes) 1m

Format 2 (2 bytes): first eight bits for operation code, next four for register 1 and

following four for register 2. The numbers for the registers go according to the numbers

indicated at the registers section (ie, register T is replaced by hex 5, F is replaced by hex

6).

Opcode 8bits R1 4bits R2 4bits

Format 3 (3 bytes) 2m

Format 3 (3 bytes): First 6 bits contain operation code, next 6 bits contain flags, last 12

bits contain displacement for the address of the operand. Operation code uses only 6 bits,

thus the second hex digit will be affected by the values of the first two flags (n and i). The

flags, in order, are: n, i, x, b, p, and e.

n-indirection , i-immediate , x-indexing , b-Base relative , p-PC relative , e-Extended

Opcode 6bits n i x b p e displacement 12 bits

Format 4 (4 bytes) 1m

Format 4 (4 bytes): same as format 3 with an extra 2 hex digits (8 bits) for addresses that require

more than 12 bits to be represented.

Opcode 6bits n i x b p e Address 20 bits

Opcode 8bits

Formats 3 & 4 introduce addressing mode flag bits

Addressing Modes 5m

SIC/XE supports the following addressing modes

n=0 & i=1
Immediate addressing - TA is used as an operand value (no memory reference)

2. n=1 & i=0
Indirect addressing - word at TA (in memory) is fetched & used as an address to
fetch the operand from

3. n=0 & i=0
Simple addressing TA is the location of the operand

4.n=1 & i=1
Simple addressing same as n=0 & i=0

5.Flag x: Indexed addressing

x=1 Indexed addressing add contents of X register to TA calculation

Flag b & p (Format 3 only):

· b=0 & p=0

Direct addressing displacement/address field containsTA (Format 4 always uses
direct addressing)

· b=0 & p=1

PC relative addressing - TA=(PC)+disp (-2048<=disp<=2047)*

· b=1 & p=0
Base relative addressing - TA=(B)+disp (0<=disp<=4095)**

Flag e:e=0 use Format 3
e=1 use Format 4

Q2a. What is System software? Differentiate it from application software. (4 Marks)

Definition 1m

System software consists of a variety of programs that support the operation of a

computer. Assemblers ,loaders .linkers are examples of system software.

Differences between system software and application software 3m

System software Application Software

These are intended to support the operation &use
of computers

Concerned primarily on the solution of a

problem using computer as a tool.

Focus is on the architecture of computing

system.

Focus is on application not on the computing

system.

Machine dependent Dependent on system software

Ex:Assemblers,Compilers EX:MS paint,MS word

Q2 b. Write a sequence of instructions for SIC/XE to clear a 20-byte string to all blanks 6 Marks

SIC/XE PROGRAM: 4m

LDT #20 Initialize register T to 20
LDX #0 Initialize index register to 0

LOOP LDCH #0 Load 0 into register A
STCH STR1,X Store 0 into str1
TIXR T Add 1 to index,compare result to 20

JLT LOOP Loop if index less than 20

.

.

STR1 RESW 20

Q3a. Write a short note on parser-lexer communication 5 MArks

 When you use a lex scanner and a yacc parser together a communication is needed

The parser is the higher level routine.

 It calls the lexer yylex() whenever it needs a token from the input.

 The lexer then scans through the input recognizing tokens. As soon as it finds a token of

interest to the parser, it returns to the parser,

With the token in yylval

The lexer and the parser have to agree what the token codes are. yacc defines the token code

 Yacc write a y.tab.h C header file containing all of the token definitions.

Include y.tab.h in the lexer

Q3b. Write a Lex program to count the number of vowels and consonants in a string: (5 M)

%{

int vowels = 0;

int consonents = 0;

%}

%%

[\t\n]+ ;

[aeiouAEIOU] vowels++;

[bcdfghjklmnpqrstvwxyzBCDFGHJKLMNPQRSTVWXYZ] consonents++;

. ;

%%

main()

{

yylex();

Printf(“The No of vowels are %d”,vowels);

Printf(“The no of consonents are %d”,consonents);

}

Q4a. Calculate the target address generated for the following machine instructions. (6 Marks)

i. 032600h ii.03C300h iii.0310C303h. Consider (B)=006000, (PC)=003000 (X)=000090

I)032600H 2M

000000 1 1 0 0 1 0 0110 0000 0000

Format3
b=0 p=1 x=0 disp=600 PC relative addressing mode in format3 PC=3000h ,

TA=(PC) + disp=3000 +600=3600

ii.03C300h 2M

000000 1 1 1 1 0 0 0011 0000 0000

Format3

b=1 p=0 x=1 disp=300 base relative addressing mode with indexing in format3

B=6000h , TA=(B) +(x)+ disp=6000 +90+0300=6390

iii.0310C303h. 2m

Format 4, TA=20 bit address =0C303

Q4b. What is regular expression? Explain the lex specification with an example. (4 Marks)

Structure of a Lex specification

%{definitions%}
%%
{rules} 2m
%%
{user subroutine}
Lex program has three parts ,where the definitions and the user subroutines are optional.
1)Definition Section 1m

Enclosed between %{ And %}

Definition Section contains the following

 Header file inclusions
 Variable declarations .

Definition Section of word counting program
%{

charcount = 0, wordcount = 0, linecount = 0;

% }

Word [^' \t\n]+

Eol \n

The code block here declares three variables used within

the program to track the number of characters, words, and lines encountered.

The last two lines are definitions. Lex provides a simple substitution mechanism

to make it easier to define long or complex patterns. We have added

000000 1 1 0 0 0 1 0000 1100 0011 0000 0011

two definitions here. The first provides our description of a word: any

non-empty combination of characters except space, tab, and newline. The

second describes our end-of-line character, newline. We use these definitions

in the second section of the file, the rules section

2)Rules Section

Rules are enclosed between %% and %%

Rules Section defines
R1 {action1}
R2 {action2}

Where

 each Ri is a regular expression

 action i, is a program fragment defining what action the lexical analyzer should

take when pattern Ri matches lexeme.

In Lex actions are written in C;in general,however,they can be in any

implementation language.

The rules section contains the patterns and actions that specify the lexer.
Here is our sample word count's rules section:
%%

{word} { wordcount++; charcount += yyleng;}

{eol} { chartount++; linecount++; }

. {charcount++;} 2m

%%

variable yyleng which contains the length of the string our lexer recognized.

lexer recognizes a newline, it will increment both the character

count and the line count. Similarly, if it recognizes any other character it

increments the character count. For this lexer, the only "other characters" it

could recognize would be space or tab; anything else would match the first

regular expression and be counted as a word.

3) User subroutine 2m

 The third section holds whatever auxiliary procedures are needed by the

actions.

Lex copies it to the C file after the end of the lex generated code

main ()

{

YYlexO ;

printf("%d %d %d\nm,lineCount, wordcount, charcount);

}

It first calls the lexer's entry point yyIex() and then calls printf() to print the
results of this run

When yylex() reaches the end of its input file, it calls yywrap(), which
returns a value of 0 or 1. If the value is 1, the program is done and there is

no more input. If the value is 0, on the other hand, the lexer assumes that

w r a p () has opened another file for it to read, and continues to read from

yyin. The default yywrap() always returns 1. By providing our own version

of yywrap(), we can have our program read all of the files named on

the command line, one at a time.

Q5.Write and explain the algorithm of PASS-2 of an Assembler (10 Marks)

The Algorithm for Pass 2:
 Initialization of records – 2 Marks
 Checking Symbol table and Operation table for opcode and label – 5 Marks
 Checking optab for assembler directives – 3 Marks

Begin

read 1st input line

if OPCODE = ‘START’ then

begin

write listing line

read next input line

end

write Header record to object program

initialize 1st Text record

while OPCODE != ‘END’ do

begin

if this is not comment line then

begin

search OPTAB for OPCODE

if found then

begin

if there is a symbol in OPERAND field then

begin

search SYMTAB for OPERAND field then

if found then

begin

store symbol value as operand address

else

begin

store 0 as operand address

set error flag (undefined symbol)

end

end (if symbol)

else
store 0 as operand address

assemble the object code instruction

else if OPCODE = ‘BYTE’ or ‘WORD” then

convert constant to object code

if object code doesn’t fit into current Text record then

begin

Write text record to object code

initialize new Text record

end

add object code to Text record

end {if not comment}

6a. What is program relocation? Explain the problem associated with it and solutions?

The need for program relocation 1 Mark

· It is desirable to load and run several programs at the same time.

· The system must be able to load programs into memory wherever there is room.

· The exact starting address of the program is not known until load time.

Example:

Explanation 3 Marks

………………………………………………………………………………………………………

…

· The only parts of the program that require modification at load time are those that
specify direct addresses.

· The rest of the instructions need not be modified.

Not a memory address (immediate addressing)

PC-relative, Base-relative

· From the object program, it is not possible to distinguish the address and constant.

The assembler must keep some information to tell the loader about those portions of the
program that needs modification.Modification record is used for this purpose

The object program that contains the modification record is called Relocatable
program.

The way to solve the relocation problem 2 Marks

· For an address label, its address is assigned relative to the start of the

program(START 0)

· Produce a Modification record to store the starting location and the length of the address
field to be modified.

Modification record

· One modification record for each address to be modified

· The length is stored in half-bytes (4 bits)

· The starting location is the location of the byte containing the leftmost bits of the
address field to be modified.

· If the field contains an odd number of half-bytes, the starting location begins in the
middle of the first byte.

M^000007^05

M^000014^05

6.b. Give the format of the following 4 MArks
i). Header record ii)Text record iii) End record

Header record: 1 Mark

Col. 1 H

Col.2-7 Program name

Col.8-13 Starting address of object program

Col.14-19 Length of object program in bytes

Text record: 2 Marks

Col.1 T

Col.2-7 Starting address for object code in this record

Col.8-9 Length of object code in this record in bytes

Col 10-69 Object code, represented in hexadecimal (2 columns per byte of object

code)

End record: 1 Mark

Col.1 E

Col.2-7 Address of first executable instruction in object program.

7. Generate the complete object code for the ALP.Assume suitable machine equivalents from the

mnemonic opcodes. (10 Marks)

OPCODES:LDX-04 LDA-00 LDB-68 ADD-18 TIX-2C STA-0C JLT-38 RSUB-4C

 Calculation of Addresses – 2 Marks
 Generating Object Code – 8 Marks

SUM START 0000

0000 FIRST LDX #0 050000h

0003 LDA #0 010000h

0006 +LDB #TABLE2 69100320h

BASE TABLE2

000A LOOP ADD TABLE,X 1BA013

000D ADD TABLE2,X 1BA310

0010 TIX COUNT 2F200A

0013 JLT LOOP 3B2FF4

0016 +STA TOTAL 0F100920h

001A RSUB 4F0000

001D COUNT RESW 1

0020 TABLE RESW 0100H

0320 TABLE2 RESW 0200H

0920 TOTAL RESW 1

0923 END FIRST

1. LDX #0 ,LDX-04

Object Code : 050000h

2. LDA #0 ,LDA - 00

Object Code : 010000h

3. +LDB #TABLE2 ,LDB-68 –Format 4 instruction

Object Code : 69100320h

4. ADD TABLE , X , ADD-18 – Format 3 Instruction

Displacement = TA – PC

= 0020 – 000D = 013

Object Code : 1BA013

5. ADD TABLE2 , X , ADD-18 – Format 3 instruction

Displacement = TA-PC = 0320-0010 = 0310

Object Code : 1BA310

6. TIX COUNT ,TIX – 2C ,Format 3 Instruction

Displacement = TA-PC = 001D – 0013 = 00A

Object Code : 2F200A

7. JLT LOOP , JLT - 38

Displacement = TA-PC = 000A – 0016 = FF4

000001 0 1 0 0 0 0 0000 0000 0000

000000 0 1 0 0 0 0 0000 0000 0000

0110 10 0 1 0 0 0 1 0000 0000 0011 0010 0000

0001 10 1 1 1 0 1 0 0000 0001 0011

0001 10 1 1 1 0 1 0 0011 0001 0000

0010 11 1 1 0 0 1 0 0000 0000 1010

0011 10 1 1 0 0 1 0 1111 1111 0100

Object Code : 3B2FF4

8. +STA TOTAL ,STA -0C

Object Code : 0F100920

9. RSUB , RSUB – 4C
Object Code : 4F0000

0000 11 1 1 0 0 0 1 0000 0000 1001 0010 0000

