CMR INSTITUTE OF TECHNOLOGY

Internal Assessment Test 1 - SEP 2016

Sub:	Operating Systems						Code:	10CS53	
Date:	07 / 09/2016	Duration:	90 mins	Max Marks:	50	Sem:	V	Branch:	ISE

USN:

Note: Answer any five questions:

- 1. What is process? Explain process states with a diagram. What are the various fields of PCB.
- 2. What is critical section problem? Describe the solution using semaphore for readers-writers problem
- 3. What is IPC? Explain the concept of shared memory model taking producer-consumer problem as eg.
- 4. Explain the benefits of multi threaded programming. Also explain different multi threading models.
- 5. What are monitors? Describe the monitor solution to the classical dining philosopher's problem.
- 6. Consider the following set of processes. Draw Gantt charts showing the execution of these processes using:
- (i)FCFS (ii)Preemptive SJF (iii)Non Preemptive Priority (iv)RR (Time quantum = 1 Milli sec).

		-	-
USN:			

CMR INSTITUTE OF TECHNOLOGY

Internal Assessment Test 1 – SEP 2016

Sub:	Operating Systems					Code:	10CS53		
Date:	07 / 09/2016	Duration:	90 mins	Max Marks:	50	Sem:	V	Branch:	ISE

Note: Answer any five questions:

- 1. What is process? Explain process states with a diagram. What are the various fields of PCB.
 - 2. What is critical section problem? Describe the solution using semaphore for readers-writers problem
- √3. What is IPC? Explain the concept of shared memory model taking producer-consumer problem as eg.
- Explain the benefits of multi threaded programming. Also explain different multi threading models.
- 5. What are monitors? Describe the monitor solution to the classical dining philosopher's problem.
- 6. Consider the following set of processes. Draw Gantt charts showing the execution of these processes using:
- (i)FCFS (ii)Preemptive SJF (iii)Non Preemptive Priority (iv)RR (Time quantum = 1 Milli sec).

(i) ECES	(iv) 4-8 PR 8.6	(111) T.25	
8 ms	PR 6	Preprio 11. 75	
(ii) 2.4	fre 431 7. 23	(lu) His	ر_>
(ili) 5 (ili) 5	(ii) 7.25 HARE 11.75		
8.8	Hubs 11		

Compute the average waiting time and average turn around time in each scheme and thus find the best scheme in this case.

Process	Arrival Time	Burst Time	Priority
4			
P;	0	05	4
P2	0	01	2
1.3	1	10	3
P4	1	01	1
P5	2	02	3

7. Consider the following set of processes. Draw Gantt charts showing the execution of these processes using:

(i) Preemptive SJF (ii)Non Preemptive SJF (iii) Preemptive Priority (iv) RR (Time quantum = 1 milli

Compute the average waiting time and average turn around time in each scheme and thus find the best scheme in this case.

Process	Arrival Time	Burst Time	Priority
PI	0	10	3
P2	1	01	4
P3	1	05	3
P4	3	02	1

Compute the average waiting time and average turn around time in each scheme and thus find the best scheme in this case.

Pro	cess	Arrival Time	Burst Time	Priority
PI	20	0	05	4
P2		0	01	2
P3		1	10	3
14		I	01	1
P5		2	02	3

7. Consider the following set of processes. Draw Gantt charts showing the execution of these processes using:

(i) Preemptive SJF (ii)Non Preemptive SJF (iii) Preemptive Priority (iv) RR (Time quantum = 1 milli sec).

Compute the average waiting time and average turn around time in each scheme and thus find the best scheme in this case.

Process	Arrival Time	Burst Time	Priority
Pl	0	10 (2)	3
P2	1	01-4	4
P3	1	05.4	3
P4	3	02	1

SCHEME OF EVALUATION

SUB: OPERATING SYSTEMS

CODE: 10C553 MAX MARKS: 50

SEM : V

BRANCH: ISE

- 1. Process definition. With diagram (2 marks)
 Process States Wilts diagram (4 marks)
 PCB various fields Wilts diagram (4 marks)
- 2. Critical Section problem (2 marks)

 Reader-Writer problem (2 marks)

 Gemaphores Wit, muter and readcount (2 marks)

 Writer (2 marks)

 Reader (2 marks)
- 3. IPC definition (2marks)

 Shared memory Wilts diagram (2marks)

 Buffer (2marks)

 Produced (2marks)

 Consumer (2marks)
- 4. Benefits of multithreading (2marks)
 4 models 8 marsks
- 5. Monitor definition
 Standage
 Schematic View (4 marks)
 Solution 2 (6 marks)

in FCFS

PI		P2 P3	1	24 P	5
0	5	6	16	17	1

TO EN

WT for
$$P_1 = 0$$

" $P_2 = 5$

" $P_3 = 5$

" $P_4 = 15$

" $P_5 = 15$

Avg $WT = 0 + 5 + 5 + 15 + 15$

Turnaround time for
$$P_1 = 5$$
 $P_2 = 6$
 $P_3 = 15$
 $P_4 = 16$
 $P_5 = 17$
 $P_5 = 17$

$$= \frac{40}{5} = 8 \text{ms}$$

(ii) Poe emptive SJF

WT for
$$P_1 = 4$$
WT for $P_2 = 0$
WT for $P_3 = 8$
WT for $P_4 = 0$
WT for $P_4 = 0$
WT for $P_5 = 0$
Avg WT = $4+8$

Turnaround time
$$P_1 = 9$$

P2 = 1

P3 = 18

P4 = 1

P5 = 32

Avg WT =
$$\frac{4+8}{5}$$

= $\frac{12}{5}$ = $\frac{2.4m}{5}$

Avg
$$TT = \frac{31}{5}$$

$$= 6.2ms$$

$$P_{2}$$
 P_{4} P_{2} P_{5} P_{1} P_{2} P_{3} P_{4} P_{2} P_{5} P_{1} P_{2} P_{3} P_{4} P_{5} P_{1} P_{2} P_{3} P_{4} P_{5} P_{5} P_{1} P_{2} P_{3} P_{4} P_{5} P_{5

(iV) Round Robin

P1 P2 P3 P4 P, P5 P3 P, P5 P3 P, P3 P1 P3	Request Quene
WT for P = +2-4=0=8	P3-98
WT for $P_2 = 1 - 0 = 1$ WT for $P_3 = 13 - 4 - 1 = 8$	P4 0 P1-32 P5-1
1015 for P4=3-1=2	LE .
NT for $P_5 = 8 - 1 - 2 = 5$	

TT for
$$R = 13-0=13$$

TT for $R = 13-0=13$

TT for $P_4 = 4-1=3$

TT for $P_2 = 2-0=2$

TT for $P_3 = 19-1=18$

TT for $P_4 = 4-1=3$

Avg TT = $13+2+18+3+7$

= $\frac{43}{5} = 8.6 \text{ms}$

Free emptive SJF

$$P_1 P_2 P_3 P_4 P_3 P_1$$
 $P_1 P_2 P_3 P_4 P_3 P_1$
 $P_1 P_2 P_3 P_4 P_3 P_4$
 $P_1 P_2 P_3 P_4 P_5$
 $P_1 P_2 P_5 P_5$
 $P_1 P_2 P_5$
 $P_1 P$

WT for
$$P_1 = 18$$

WT for $P_1 = 18$
 $P_2 = 0$
 $P_3 = 3$
 $P_4 = 0$

Avg $P_4 = 2$
 $P_4 = 2$

(ii) Non Preemptive SJF

10	101	81. 1	Pa	
(h)	12	19	2	18
0	10	1))	,

Wr for $P_1 = 8$ Wr for $P_2 = 0$ Wr for $P_3 = 7$ Wr for $P_4 = 3$ Wr $P_4 = 3$ Avg $P_4 = 3$ TT for $P_1 = 18$ 1 $P_2 = 1$ 1 $P_3 = 12$ 1 $P_4 = 5$ Avg $TT = \frac{36}{4} = \frac{9}{10}$