
CMR

INSTITUTE SCHEME OF EVALUATION
OF TECHNOLOGY

Internal Assessment Test I – Sept. 2016

Note: Answer any four full questions from part A. Part B is compulsory. (5 X 10 =
50)

Question
No. Description Marks Split up Total

Marks
1. a) Data model concept.

 Categories of data model.
1
4

5M
10Mb) Diagram of 3 schema architecture

 Explanation
2
3

5M

2. Diagram
 Explanation

4
6

10M

3. a) Cardinality ratio definition
 Cardinality ratio example
 Participation definition and types
 Example

1
1.5
1

1.5

5M

10M
b) Weak Entity type

 Identifying entity type and relationship
 ER Notation
 Role of Partial Key

1.5
1.5
1
1

5M

4. a) Relation Schema definition
 Characteristics of Relations

1
5

6M
10M

b) Set theoretic operations
 Explanation of any two + Examples

1
3

4M

5. Domain Constraint 2

10M

 Key Constraint
 Super key and keys
 Candidate key and Primary key

1+1+1

 Not Null Constraint 1
 Entity Integrity Constraint 1
 Referential Integrity Constraint

 Foreign key
1+2

6. a) i. Expression for i
ii. Expression for ii

iii. Expression for ii
iv. Expression for iv

1.5
1.5
1.5
1.5

6M
10M

b) ITEM X COMPANY
 ITEM * COMPANY

2
2

4M

7. ER diagram either Employee or College Database 10M

Sub: DATABASE MANAGEMENT SYSTEMS Code: 10CS54

Date: 08/09/2016 Duration: 90 mins Max Marks: 50 Sem: 5 A Branch: CSE

SOLUTIONS

PART –A

1a) Explain the concept of a data model? Explain different categories of data models.

A data model is a collection of concepts that can be used to describe the structure of a database.
It provides the necessary means to achieve data abstraction so that different users can perceive data at
their preferred level of detail. Structure of a database corresponds to the data types, relationships, and
constraints that apply to the data. Most data models also include a set of basic operations for specifying
retrievals and updates on the database.
The following are the categories of the data models.
High-level or conceptual data models provide concepts that are close to the way many users perceive
data. Conceptual data models use concepts such as entities, attributes, and relationships. An entity
represents a real-world object or concept, such as an employee or a project from the mini-world that is
described in the database. An attribute represents some property of interest that further describes an
entity, such as the employee’s name or salary. A relationship among two or more entities represents an
association among the entities, for example, a works-on relationship between an employee and a
project.
Low-level or physical data models provide concepts that describe the details of how data is stored on
the computer storage media. Concepts provided by low-level data models are generally meant for
computer specialists, not for end users. Physical data models describe how data is stored as files in the
computer by representing information such as record formats, record orderings, and access paths. An
access path is a structure that makes the search for particular database records efficient.
Between these two extremes is a class of representational (or implementation) data models, which
provide concepts that may be easily understood by end users but that are not too far removed from the
way data is organized in computer storage. Representational data models hide many details of data
storage on disk but can be implemented on a computer system directly.

1b) with a neat diagram, explain the Three – schema architecture.

The three-schema architecture is a convenient tool with which the user can visualize the schema levels
in a database system. The goal of the three-schema architecture, is to separate the user applications
from the physical database. In this architecture, schemas can be defined at the following three levels:

a) Internal Level: The internal level has an internal schema, which describes the physical storage
structure of the database. The internal schema uses a physical data model and describes the complete
details of data storage and access paths for the database.
b) Conceptual level: The conceptual level has a conceptual schema, which describes the structure of
the whole database for a community of users. The conceptual schema hides the details of physical
storage structures and concentrates on describing entities, data types, relationships, user operations,
and constraints. Usually, a representational data model is used to describe the conceptual schema when
a database system is implemented. This implementation conceptual schema is often based on a
conceptual schema design in a high-level data model.
c) External or view level: The external or view level includes a number of external schemas or user
views. Each external schema describes the part of the database that a particular user group is interested
in and hides the rest of the database from that user group. As in the previous level, each external
schema is typically implemented using a representational data model, possibly based on an external
schema design in a high-level data model.
Mapping: The three schemas are only descriptions of data; the stored data that actually exists is at the
physical level only. In a DBMS based on the three-schema architecture, each user group refers to its
own external schema. Hence, the DBMS must transform a request specified on an external schema into
a request against the conceptual schema, and then into a request on the internal schema for processing
over the stored database. If the request is database retrieval, the data extracted from the stored database
must be reformatted to match the user’s external view. The processes of transforming requests and
results between levels are called mappings.

2) Explain with a neat diagram the different phases of database design.

The above diagram depicts the different phases of database design process. The first step
shown is requirements collection and analysis. During this step, the database designers interview

prospective database users to understand and document their data requirements. The result of this step
is a concisely written set of users’ requirements. These requirements should be specified in as detailed
and complete a form as possible. In parallel with specifying the data requirements, it is useful to
specify the known functional requirements of the application. These consist of the user-defined
operations (or transactions) that will be applied to the database, and they include both retrievals and
updates.

Once all the requirements have been collected and analyzed, the next step is to create a
conceptual schema for the database, using a high-level conceptual data model. This step is called
conceptual design. The conceptual schema is a concise description of the data requirements of the
users and includes detailed descriptions of the entity types, relationships, and constraints; these are
expressed using the concepts provided by the high-level data model. Because these concepts do not
include implementation details, they are usually easier to understand and can be used to communicate
with nontechnical users. The high-level conceptual schema can also be used as a reference to ensure
that all users’ data requirements are met and that the requirements do not include conflicts. This
approach enables the database designers to concentrate on specifying the properties of the data,
without being concerned with storage details.

During or after the conceptual schema design, the basic data model operations can be used to
specify the high-level user operations identified during functional analysis. This also serves to confirm
that the conceptual schema meets all the identified functional requirements.

The next step in database design is the actual implementation of the database, using a
commercial DBMS. Most current commercial DBMSs use an implementation data model—such as the
relational or the object database model—so the conceptual schema is transformed from the high-level
data model into the implementation data model. This step is called logical design or data model
mapping, and its result is a database schema in the implementation data model of the DBMS.

Finally, the last step is the physical design phase, during which the internal storage structures,
access paths, and file organizations for the database files are specified. In parallel with these activities,
application programs are designed and implemented as database transactions corresponding to the
high-level transaction specifications.

3a) What are structural constraints of a relationship type. Explain each with examples.
Cardinality ratio and participation constraints, taken together are the structural constraints of a

relationship type.

The cardinality ratio for a binary relationship specifies the maximum number of relationship
instances that an entity can participate in.
For example, consider a binary relationship type WORKS_FOR between Department and Employee
entity types, DEPARTMENT:EMPLOYEE is of cardinality ratio 1:N, meaning that each department
can be related to numerous employees, but an employee can be related to (work for) only one
department.
The possible cardinality ratios for binary relationship types are 1:1, 1:N, N:1, and M:N.
The binary relationship MANAGES which relates a department entity to the employee who manages
that department; the cardinality ratio is 1:1. This represents the constraint that an employee can
manage only one department and that a department has only one manager.
The relationship type WORKS_ON between Employee entity and the Project entity that he works for,
is of cardinality ratio M:N, representing that an employee can work on several projects and a project
can have several employees.

The participation constraint specifies whether the existence of an entity depends on its being related
to another entity via the relationship type. There are two types of participation constraints—total and
partial.
If a company policy states that every employee must work for a department, then an employee entity
can exist only if it participates in a WORKS_FOR relationship instance. Thus, the participation of
EMPLOYEE in WORKS_FOR is called total participation, meaning that every entity in "the total set"
of employee entities must be related to a department entity via WORKS_FOR. Total participation is
also called existence dependency.
On the other hand, we do not expect every employee to manage a department, so the participation of
EMPLOYEE in the MANAGES relationship type is partial, meaning that some or "part of the set of"
employee entities are related to a department entity via MANAGES, but not necessarily all.

3b) What is a weak entity type? Explain the role of partial key in design of weak entity type.
Entity types that do not have key attributes of their own are called weak entity types. Entities

belonging to a weak entity type are identified by being related to specific entities from another entity
type in combination with some of their attribute values. We call this other entity type the identifying
or owner entity type and we call the relationship type that relates a weak entity type to its owner the
identifying relationship of the weak entity type. A weak entity type always has a total participation
constraint (existence dependency) with respect to its identifying relationship, because a weak entity
cannot be identified without an owner entity.
Consider the entity type DEPENDENT, related to EMPLOYEE, which is used to keep track of the
dependents of each employee. The attributes of DEPENDENT are Name (the first name of the
dependent), BirthDate, Sex, and Relationship (to the employee). Two dependents of two distinct
employees may, by chance, have the same values for Name, BirthDate, Sex, and Relationship, but they
are still distinct entities. They are identified as distinct entities only after determining the particular
employee entity to which each dependent is related. Each employee entity is said to own the dependent
entities that are related to it.
In ER diagrams, both a weak entity type and its identifying relationship are distinguished by
surrounding their boxes and diamonds with double lines.
A partial key, which is the set of attributes, is used to uniquely identify weak entities that are related to
the same owner entity. The partial key attribute is underlined with a dashed or dotted line.

4a) What is a relation schema? Explain characteristics of Relations.
A relation schema R, denoted by R(A1, A2, . . ., An), is made up of a relation name R and a list of
attributes A1, A2, . . ., An. Each attribute Ai is the name of a role played by some domain D in the
relation schema R. A relation schema is used to describe a relation; R is called the name of this
relation. D is called the domain of Ai and is denoted by dom(Ai).

Characteristics of Relations
Ordering of Tuples in a Relation: A relation is defined as a set of tuples. Mathematically, elements of
a set have no order among them; hence tuples in a relation do not have any particular order. However,
in a file, records are physically stored on disk so there always is an order among the records. This
ordering indicates first, second, ith, and last records in the file. Similarly, when we display a relation as
a table, the rows are displayed in a certain order.
Ordering of Values within a Tuple, and an Alternative Definition of a Relation: According to the
preceding definition of a relation, an n-tuple is an ordered list of n values, so the ordering of values in

a tuple and hence of attributes in a relation schema definition is important. However, at a logical level,
the order of attributes and their values are not really important as long as the correspondence
between attributes and values is maintained.
An alternative definition of a relation can be given, making the ordering of values in a tuple
unnecessary. In this definition, a relation schema R = {A1, A2, . . ., An} is a set of attributes, and a
relation r(R) is a finite set of mappings r = {t1, t2, . . ., tm}, where each tuple ti is a mapping from R to
D, and D is the union of the attribute domains; that is, D = dom(A1) U dom(A2) U. . .U dom(An). In
this definition, t[Ai] must be in dom(Ai) for 1<=i<=n for each mapping t in r. Each mapping ti is called
a tuple.
Values in the Tuples: Each value in a tuple is an atomic value; that is, it is not divisible into
components within the framework of the basic relational model. Hence, composite and multi valued
attributes are not allowed. Much of the theory behind the relational model was developed with this
assumption in mind, which is called the first normal form assumption.
The values of some attributes within a particular tuple may be unknown or may not apply to that tuple.
A special value, called null, is used for these cases. In general, we can have several types of null
values, such as "value unknown," "value exists but not available," or "attribute does not apply to this
tuple.
Interpretation of a Relation: The relation schema can be interpreted as a declaration or a type of
assertion. For example, the relation schema of the STUDENT(Name, SSN, HomePhone, Address,
Age, GPA) can be asserted as, a student entity has a Name, SSN, HomePhone, Address, Age, and
GPA. Each tuple in the relation can then be interpreted as a fact or a particular instance of the
assertion.
An alternative interpretation of a relation schema is as a predicate; in this case, the values in each tuple
are interpreted as values that satisfy the predicate.

4b) List the set theoretic operations in relational data model. Explain any two with examples.
The following are the set theoretic operations are used to merge the elements of two sets in various
ways in relational algebra,

 UNION

 INTERSECTION
 SET DIFFERENCE

When these operations are adapted to relational databases, the two relations on which any of the above
three operations are applied must have the same type of tuples; this condition is called union
compatibility.

UNION: The result of this operation, denoted by R∪S, is a relation that includes all tuples that are
either in R or in S or in both R and S. Duplicate tuples are eliminated.
Example:

R∪S:R: S:
Name
Ram

Raju

Rakesh

Rajesh

Ramu

Name
Ram

Raju

Rakesh

Name
Ram

Rajesh

Ramu

INTERSECTION: The result of this operation, denoted by R∩S, is a relation that includes all tuples

that are in both R and S.
Example:

R∩S:R: S:

SET DIFFERENCE: The result of this operation, denoted by R - S, is a relation that includes all
tuples that are in R but not in S.
Example:

R - S:R: S:

5) Explain schema-based constraints in relational model.
Domain Constraints: Domain constraints specify that the value of each attribute A must be an atomic
value from the domain dom(A). The data types associated with domains typically include standard
numeric data types for integers (such as short-integer, integer, long-integer) and real numbers (float
and double-precision float). Characters, fixed-length strings, and variable-length strings are also
available, as are date, time, timestamp, and money data types.

Key Constraints and Constraints on Null: A relation is defined as a set of tuples. By definition, all
elements of a set are distinct; hence, all tuples in a relation must also be distinct. This means that no
two tuples can have the same combination of values for all their attributes. Usually, there are other
subsets of attributes of a relation schema R with the property that no two tuples in any relation state r
of R should have the same combination of values for these attributes. Suppose that we denote one such
subset of attributes by SK; then for any two distinct tuples t1 and t2 in a relation state r of R, we have
the constraint that

t1[SK] ≠ t2[SK]
Any such set of attributes SK is called a super key of the relation schema R. A super key SK specifies
a uniqueness constraint that no two distinct tuples in a state r of R can have the same value for SK. A
super key can have redundant attributes, however, so a more useful concept is that of a key, which has
no redundancy.
A key K of a relation schema R is a super key of R with the additional property that removing any
attribute A from K leaves a set of attributes K’ that is not a super key of R. Hence, a key is a minimal
super key—that is, a super key from which we cannot remove any attributes and still have the
uniqueness constraint hold.
In general, a relation schema may have more than one key. In this case, each of the keys is called a
candidate key. One among of the candidate keys is designated as the primary key of the relation, which
is used to uniquely identify a tuple in the relation.

Name
Ram

Name
Ram

Raju

Rakesh

Name
Ram

Rajesh

Ramu

Name
Ram

Raju

Rakesh

Name
Ram

Rajesh

Ramu

Name
Raju

Rakesh

Another constraint on attributes specifies whether null values are or are not permitted. For example, if
every STUDENT tuple must have a valid, non-null value for the Name attribute, then Name of
STUDENT is constrained to be NOT NULL.

Entity Integrity constraint: The entity integrity constraint states that no primary key value can be
null. This is because the primary key value is used to identify individual tuples in a relation; having
null values for the primary key implies that we cannot identify some tuples. If two or more tuples had
null for their primary keys, we might not be able to distinguish them.

Referential Integrity and Foreign Keys: The referential integrity constraint is specified between two
relations and is used to maintain the consistency among tuples of the two relations. The referential
integrity constraint is specified between two relations and is used to maintain the consistency among
tuples of the two relations.
To define referential integrity more formally, we first define the concept of a foreign key. The
conditions for a foreign key, given below, specify a referential integrity constraint between the two
relation schemas R1 and R2. A set of attributes FK in relation schema R1 is a foreign key of R1 that
references relation R2 if it satisfies the following two rules:
1. The attributes in FK have the same domain(s) as the primary key attributes PK of R2; the attributes
FK are said to reference or refer to the relation R2.
2. A value of FK in a tuple t1 of the current state r1(R1) either occurs as a value of PK for some tuple
t2 in the current state r2(R2) or is null. In the former case, we have t1[FK] = t2[PK], and we say that
the tuple t1 references or refers to the tuple t2. R1 is called the referencing relation and R2 is the
referenced relation.
If these two conditions hold, a referential integrity constraint from R1 to R2 is said to hold.

6a) Consider the following schema for a COMPANY database:
EMPLOYEE(Fname, Lname, SSN, DOB, Sex, Salary, Super_Ssn, Dno)
DEPARTMENT(Dnumber, Dname, Mgr_ssn, mgr_str_date)
DEPT_LOCATION(Dnumber, Dlocation)
PROJECT(Pname, Pnumber, Plocation, Dno)
WORKS-ON(Essn, Pno, Hours)
DEPENDENT(Essn, Depn_name, Sex, Relationship)

Write the relation algebra expressions for the following.
i. Retrieve the names and salary of all employees who works for ‘Finance’

department.
ii. List the names of all employees with two or more dependents.

iii. List all male employees from Dno = 10 and earn less than 50000
iv. Retrieve department number, the number of employees in the department and their average

salary.

6b) The tables ITEM and COMPANY are given below. Write the results of ITEM X COMPANY
and ITEM * COMPANY

ITEM X COMPANY
ITEMID ITEMNAME CID CID CNAME CITY

10 Chocolate 21 21 Parle Bangalore
10 Chocolate 21 22 Britannia Mysore
10 Chocolate 21 23 Pepsi Bangalore
11 Cakes 22 21 Parle Bangalore
11 Cakes 22 22 Britannia Mysore
11 Cakes 22 23 Pepsi Bangalore
12 Biscuit 21 21 Parle Bangalore
12 Biscuit 21 22 Britannia Mysore
12 Biscuit 21 23 Pepsi Bangalore

ITEM * COMPANY
ITEMID ITEMNAME CID CNAME CITY

10 Chocolate 21 Parle Bangalore
11 Cakes 22 Britannia Mysore
12 Biscuit 21 Parle Bangalore

