




Advanced Computer Architecture Scheme and Solution  

 

Q.1 A Description of MIPS floating-point unit (4 Marks) 

           Description of seven fields of reservation station (6 Marks) 

 

Q.2 A Listing the steps to unroll code (4 Marks) 

       B Explanation of Dynamic branch-prediction( 2 Marks) 

           Drawback of 1-bit prediction (1 Mark) 

           State transition diagram and explanation on 2-bit prediction( 3 Marks)            

              

Q.3 Description on Hardware based speculation, its execution steps, ROB  (10 marks) 

       and floating-point unit. 

 

Q.4 Explanation on correlating predictor (4 Marks) 

       Example(2 Marks) 

       Explanation on tournament predictor (4 Marks) 

 

Q.5 A Explanation on BTB (5 Marks) 

           Diagram of BTB ( 1 Mark) 

       B Listing four pros and cons of loop unrolling (4 Marks). 

 

Q.6 A Solving problem correctly with formula ( 4 Marks) 

       B Explanation on migration and replication ( 2 Marks) 

           Explanation on directory and snooping based protocol ( 4 Marks) 

 

Q.7  Description on centralized shared memory multiprocessor ( 5 Marks) 

         Description on distributed shared memory  multiprocessor ( 5 Marks) 

 

Q.8  Explanation on directory-based protocol along with two state (10 marks)  

        transition diagrams one for cache and other for directory  

     

 



Solution 

 

1. The basic structure of Tomasulo based Floating point unit is shown below in diagram. 

 

Instructions are sent from the instruction unit into the instruction queue from which they 

are issued in FIFO order. 

Each reservation station holds an instruction that has been issued and is awaiting 

execution at a functional unit. The reservation station hold the operand values if they are 

already computed else it contains the names of the reservation stations that will provide the 

operand values. 

Load buffers have three functions: hold the components of the effective address until it is 

computed, track outstanding loads that are waiting on the memory, and hold the results of 

completed loads that are waiting for the CDB.  

Similarly, store buffers have three functions: hold the components of the effective address 

until it is computed, hold the destination memory addresses of outstanding stores that are 

waiting for the data value to store, and hold the address and value to store until the memory 



unit is available. 

All results from either the FP units or the load unit are put on the CDB, which goes to the 

FP register file as well as to the reservation stations and store buffers.  

The FP adders implement addition and subtraction, and the FP multipliers do 

multiplication and division. 

Seven fields of reservation station are as follows 

Op: The operation to perform on source operands S1 and S2. 

Qj, Qk—It is set when operand values are unavailable. It contains the reservation stations 

that will produce the corresponding source operand; a value of zero indicates that the 

source operand is already available in Vj or Vk, or is unnecessary.  

Vj, Vk— It is set when operand values are available. It contains the value of source 

operands. For loads, the Vk field is used to hold the offset field.  

A—Used to hold information for the memory address calculation for a load or store. 

Initially, the immediate field of the instruction is stored here; after the address calculation, 

the effective address is stored here. 

Busy—indicates that this reservation station and its accompanying functional unit are 

occupied. 

2. A Steps to unroll the code and schedule it.  

Identify the loop body and loop termination code. 

Unrolling replicates loop body multiple times, adjusting the loop termination code. 

If we simply replicated the instructions when we unrolled the loop, the resulting use of the 

same registers could prevent us from effectively scheduling the loop. Thus, we will want to 

use different registers for each iteration, increasing the required number of registers. 

To perform scheduling a dependent instruction is separated from the source 

instruction by a distance in clock cycles equal to the pipeline latency of that source 

instruction. A compiler’s ability to perform this scheduling depends both on the 

amount of ILP available in the program and on the latencies of the functional units 

in the pipeline. 

      Consider following code  

Loop:  L.D   F0, 0(R1); F0=array element 

ADD.D  F4, F0, F2; add scalar in F2 



S.D   F4, 0(R1); store result 

DADDUI  R1, R1, #-8; decrement pointer;8 bytes (per DW) 

BNE   R1, R2, Loop; branch R1!=R2 

Without scheduling, every operation in the unrolled loop is followed by a dependent 

operation and thus will cause a stall. This loop will run in 27 clock cycles—each LD has 1 

stall, each ADDD 2, the DADDUI 1, plus 14 instruction issue cycles—or 6.75 clock cycles 

for each of the four elements, but it can be scheduled to improve performance significantly. 

Loop unrolling is normally done early in the compilation process, so that redundant 

computations can be exposed and eliminated by the optimizer. Consider the loop is 

unrolled for 4 iterations. The unrolled loop is shown below. 

 Loop:   L.D   F0,0(R1) 

ADD.D  F4,F0,F2 

S.D   F4,0(R1) ;drop DADDUI & BNE 

L.D   F6,-8(R1) 

ADD.D  F8,F6,F2 

S.D   F8,-8(R1) ;drop DADDUI & BNE 

L.D   F10,-16(R1) 

ADD.D  F12,F10,F2 

S.D   F12,-16(R1) ;drop DADDUI & BNE 

L.D   F14,-24(R1) 

ADD.D  F16,F14,F2 

S.D   F16,-24(R1) 

DADDUI  R1,R1,#-32 

BNE   R1,R2,Loop 

After scheduling the loop is shown below and it takes only 14 clock cycles. 

 

Loop:  L.D   F0,0(R1) 

L.D   F6,-8(R1) 

L.D  F10,-16(R1) 

L.D   F14,-24(R1) 

ADD.D F4,F0,F2 



ADD.D  F8,F6,F2 

ADD.D  F12,F10,F2 

ADD.D  F16,F14,F2 

S.D   F4,0(R1) 

S.D   F8,-8(R1) 

DADDUI  R1, R1, #-32 

S.D   F12, 16(R1) 

S.D   F16, 8(R1) 

BNE   R1, R2, Loop 

2 A Dynamic Branch-prediction 

The simplest dynamic branch-prediction scheme is a branch-prediction buffer or branch history 

table. 

The memory contains a bit that says whether the branch was recently taken or not.  

This simple 1-bit prediction scheme has a performance shortcoming: Even if a branch is almost 

always taken, we will likely predict incorrectly twice, rather than once, when it is not taken, since 

the misprediction causes the prediction bit to be flipped. 

To remedy this weakness, 2-bit prediction schemes are often used. In a 2-bit scheme, a prediction 

must miss twice before it is changed. 

Figure shows the finite-state processor for a 2-bit prediction scheme.  

By using 2 bits rather than 1, a branch that strongly favors taken or not taken—as many branches 

do—will be mispredicted less often than with a 1-bit predictor. The 2 bits are used to encode the 

four states in the system.  

The 2 bits are used to encode the four states in the system. The 2-bit scheme is actually a 

specialization of a more general scheme that has an n-bit saturating counter for each entry in the 

prediction buffer. With an n-bit counter, the counter can take on values between 0 and 2" - 1: When 

the counter is greater than or equal to one-half of its maximum value (2" - 1), the branch is 

predicted as taken; otherwise, it is predicted untaken.  

 

3  Hardware based speculation 

 

Hardware-based speculation combines three key ideas: dynamic branch 



prediction to choose which instructions to execute, speculation to allow the 

execution of instructions before the control dependences are resolved, and 

dynamic scheduling to deal with the scheduling of different combinations of basic 

blocks. 

In speculation, we fetch, issue, and execute instructions, as if our branch predictions were 

always correct. Also some mechanism is needed to handle the incorrect speculation. 

The key idea behind implementing speculation is to allow instructions to execute out of 

order but to force them to commit in order and to prevent any irrevocable action (such as 

updating state or taking an exception) until an instruction commits. Hence, when we add 

speculation, we need to separate the process of completing execution from instruction 

commit, since instructions may finish execution considerably before they are ready to 

commit. 

ROB is a source of operands for instructions, just as the reservation stations provide 

operands in Tomasulo’s algorithm. The key difference is that in Tomasulo’s algorithm, 

once an instruction writes its result, any subsequently issued instructions will find the 

result in the register file. With speculation, the register file is not updated until the 

instruction commits (and we know definitively that the instruction should execute); thus, 

the ROB supplies operands in the interval between completion of instruction execution and 

instruction commit. 

Each entry in the ROB contains four fields: the instruction type, the destination field, the 

value field, and the ready field. The instruction type field indicates whether the instruction 

is a branch (and has no destination result), a store (which has a memory address 

destination), or a register operation (ALU operation or load, which has register 

destinations). The destination field supplies the register number (for loads and ALU 

operations) or the memory address (for stores) where the instruction result should be 

written. The value field is used to hold the value of the instruction result until the 

instruction commits. The ready field indicates that the instruction has completed execution, 

and the value is ready. 

Figure below shows the basic structure of a FP unit using Tomasulo’s algorithm extended 

to handle speculation. The major change is the addition of the ROB and the elimination of 

the store buffer, whose function is integrated into the ROB.  



 

Four steps involved in executing instruction  

Issue stage 

Step 1: Instruction is issued from Instruction Queue. 

Step 2: Allocate a empty reservation station and empty ROB slot to instruction if 

available, otherwise instruction is stalled until it is available. 

Step 3: The ROB entry number of the issued instruction is sent to reservation station in 

order to tag the result when it is placed on CDB. 

Step 3: If operands available in registers or ROB , then buffer it in reservation station. 

             Execute stage 

If the operand is not available monitor the CDB until operand becomes available. 

When the operands are available execute the instruction. 

             Write Result 

After execution the result is written on CDB (with the ROB entry number that was sent when 

instruction was issued.) 

Also it is written into from CDB to ROB and any reservation station waiting for the result. 



             Commit stage 

This is final stage where instruction commits if speculation is correct and results are 

written in final register file or memory location. 

If the committing instruction is normal ALU or load instruction its result is updated in 

final register file and its entry is removed from ROB. 

If the committing instruction is normal store instruction its result is updated in memory 

and its entry is removed from ROB. 

If the committing instruction is branch and speculation is correct then execution is 

finished. 

If the committing instruction is branch and prediction is wrong i.e. incorrect speculation, 

then ROB is flushed and execution is restarted at the correct successor of the branch. 

 

4. Correlating predictor  

Consider this MIPS code 

DADDIU  R3,R1,  #–2 

BNEZ   R3,L1   ;branch b1 (aa!=2) 

DADD  R1,R0,R0  ;aa=0 

L1: DADDIU  R3,R2  ,#–2 

BNEZ   R3,L2   ;branch b2 (bb!=2) 

DADD  R2,R0,R0  ;bb=0 

L2: DSUBU  R3, R1, R2  ;R3=aa-bb 

BEQZ   R3, L3  ;branch b3 (aa==bb) 

 

Let’s label these branches b1, b2, and b3. The key observation is that the behavior of 

branch b3 is correlated with the behavior of branches b1 and b2. Clearly, if branches b1 and 

b2 are both not taken (i.e., if the conditions both evaluate to true and aa and bb are both 

assigned 0), then b3 will be taken, since aa and bb are clearly equal. A predictor that uses 

only the behavior of a single branch to predict the outcome of that branch can never capture 

this behavior. 

Branch predictors that use the behavior of other branches to make a prediction are called 

correlating predictors or two-level predictors. 



Existing correlating predictors add information about the behavior of the most recent 

branches to decide how to predict a given branch. 

General form of correlating predictor is (m,n) predictor. A (m,n) predictor uses the 

behavior of the last m branches to choose from 2m branch predictors, each of which is an 

n-bit predictor for a single branch. 

The number of bits in an (m,n) predictor is  

2
^m

 × n × Number of prediction entries selected by the branch address 

 

Example How many bits are in the (0,2) branch predictor with 4K entries? How many entries are in 

a (2, 2) predictor with the same number of bits? 

 

Answer The predictor with 4K entries has 

2
0
 × 2 × 4K = 8K bits 

How many branch-selected entries are in a (2,2) predictor that has a total of 8K bits in the 

prediction buffer?  

We know that 

2
2
 × 2 × Number of prediction entries selected by the branch = 8K 

Hence, the number of prediction entries selected by the branch = 1K. 

 

Tournament Predictor 

Tournament predictor uses multiple predictors, some predictor use global information and 

some use local information. 

Tournament predictor is very accurate and makes use of very large number of prediction 

bits effectively. 

Every tournament predictor uses 2-bit saturating counter per branch which selects the 

most efficient predictor (local, global or even mix) for that branch. 

The advantage of tournament predictor is its ability to select right predictor for a 

particular branch. 

It is found that for spec integer programs global predictor is selected 40% of time and for 

SPEC floating point programs it is selected 15% of time. 

Figure below shows the performance of local 2-bit predictor, correlating predictor and 



tournament predictor. 

 

 

Also Alpha 21264’s tournament predictor uses 4K-2bit saturating counter to choose 

among global predictor or local predictor.  

 

5. A Branch Target Buffer 

 

A branch-prediction cache that stores the predicted address for the next instruction after a 

branch is called a branch-target buffer or branch-target cache. Figure below shows a 

branch-target buffer. 

 



 

 

Because a branch-target buffer predicts the next instruction address and will send it out 

before decoding the instruction, we must know whether the fetched instruction is predicted 

as a taken branch. If the PC of the fetched instruction matches a PC in the prediction buffer, 

then the corresponding predicted PC is used as the next PC. The hardware for this 

branch-target buffer is essentially identical to the hardware for a cache. 

The PC of the instruction being fetched is matched against a set of instruction addresses 

stored in the first column; these represent the addresses of known branches. If the PC 

matches one of these entries, then the instruction being fetched is a taken branch, and the 

second field, predicted PC, contains the prediction for the next PC after the branch. 

Fetching begins immediately at that address. The third field, which is optional, may be 

used for extra prediction state bits. 

We only need to store the predicted-taken branches in the branch-target buffer, since an 

untaken branch should simply fetch the next sequential instruction, as if it were not a 

branch. 

Figure below shows the detailed steps when using a branch-target buffer for a simple 

five-stage pipeline. From this we can see that there will be no branch delay if a 

branch-prediction entry is found in the buffer and the prediction is correct. Otherwise, there 

will be a penalty of at least 2 clock cycles. 



 

 

5. B Advantages of loop unrolling  

Loop unrolling can also be used to improve scheduling. 

Determine that unrolling the loop would be useful by finding that the loop iterations were 

independent, except for the loop maintenance code. 

If the statements in the loop are independent of each other (i.e. where statements that occur earlier 

in the loop do not affect statements that follow them), the statements can potentially be executed 

in parallel 

 

     Disadvantage of loop unrolling  

Due to loop unrolling the code size grows. 

Also there is shortage of registers due to aggressive loop unrolling and scheduling. 

 



6. A. To achieve a speedup of 80 with 100 processors what fraction of computation time is 

sequential? 

 

 

Thus, to achieve a speedup of 80 with 100 processors, only 0.25% of original 

Computation can be sequential. 

 

6. B Basic schemes for enforcing coherence  

A program running on multiple processors will normally have copies of same data in 

several processors. 

In coherent multiprocessor the cache provides both migration and replication of shared 

data. 

Coherent caches support migration and data is migrated to local caches of all processors. 

It reduces the latency of access. 

It also provides replication of shared data item in caches of all processors. But this 

migration and replication is useful only for small scale multiprocessors. 

For large scale multiprocessors a protocol is used for maintaining coherence. There are 

two types of protocol. 

Directory based protocol: sharing status is maintained in directory. It has more overhead 

than snooping. 

Snooping protocol: Every cache has a copy of block of data, also has sharing status. The 



caches are connected by broadcast medium i.e. bus or switch and all cache controllers 

monitor or snoop on medium to determine whether or not they have a copy of block that is 

requested on the bus or switch access.  

Here the snooping protocol is write invalidate protocol. The processor has a exclusive 

access for any item which it writes. Write invalidate protocol means any other processor 

which has same copy of data item are invalidated until the processor having exclusive 

access completes the writing operation. 

Figure shows an example of an invalidation protocol for a snooping bus with write-back 

caches. 

 

Since the write requires exclusive access, any copy held by the reading processor must be 

invalidated. Thus, when the read occurs, it misses in the cache and is forced to fetch a new 

copy of the data. 

If two processors do attempt to write the same data simultaneously, one of them wins the 

race (we’ll see how we decide who wins shortly), causing the other processor’s copy to be 

invalidated. For the other processor to complete its write, it must obtain a new copy of the 

data, which must now contain the updated value. Therefore, this protocol enforces write 

serialization. 

The alternative to an invalidate protocol is to update all the cached copies of a data item 

when that item is written. This type of protocol is called a write update or writes broadcast 

protocol. It consumes considerably more bandwidth. 

 

 

 

7. Two types of MIMD 



Centralized shared-memory architectures 

Multiple processor-cache subsystems share the same physical memory, typically 

connected by one or more buses or a switch. The key architectural property is the uniform 

access time to all of memory from all the processors. 

For multiprocessors with small processor counts, it is possible for the processors to share 

a single centralized memory. 

Scaling the number of processors is difficult in this type of architecture.  

Because there is a single main memory that has a symmetric relationship to all processors 

and a uniform access time from any processor, these multiprocessors are most often called 

symmetric (shared-memory) multiprocessors (SMPs), and this style of architecture is 

sometimes called uniform memory access (UMA), arising from the fact that all processors 

have a uniform latency from memory, even if the memory is organized into multiple banks. 

Figure below shows what these multiprocessors look like. 

 

Distributed Shared Memory Multiprocessor 

The basic architecture of a distributed-memory multiprocessor consists of individual 

nodes containing a processor, some memory, typically some I/O, and an interface to an 

interconnection network that connects all the nodes. 

Distributing the memory among the nodes has two major benefits. First, it is a 

cost-effective way to scale the memory bandwidth if most of the accesses are to the local 

memory in the node. Second, it reduces the latency for accesses to the local memory. These 



two advantages make distributed memory attractive at smaller processor counts as 

processors get ever faster and require more memory bandwidth and lower memory latency.  

The key disadvantages for distributed memory architecture are that communicating data 

between processors becomes somewhat more complex, and that it requires more effort in 

the software to take advantage of the increased memory bandwidth afforded by distributed 

memories. 

 

 

 

8. Directory based protocol 

Just as with a snooping protocol, there are two primary operations that a directory 

protocol must implement: handling a read miss and handling a write to a shared, 

clean cache block.  

The states are as follows 

Shared—one or more processors have the block cached, and the value in 

memory is up to date (as well as in all the caches). 

Uncached—No processor has a copy of the cache block. 

Modified—Exactly one processor has a copy of the cache block, and it has written 

the block, so the memory copy is out of date. The processor is called the owner of 

the block. 

The state transitions for an individual cache are caused by read misses, write 



misses, invalidates, and data fetch requests; these operations are all shown in 

figure. 

 

The write miss operation, which was broadcast on the bus (or other network) in 

the snooping scheme, is replaced by the data fetch and invalidates operations that 

are selectively sent by the directory controller. 

Like the snooping protocol, any cache block must be in the exclusive state when it 

is written, and any shared block must be up to date in memory. 

In a directory-based protocol, the directory implements the other half of the 

coherence protocol. A message sent to a directory causes two different types of 

actions: updating the directory state and sending additional messages to satisfy 

the request. 

In addition to the state of each block, the directory must track the set of 

processors that have a copy of a block; we use a set called Sharers to perform this 

function. 

Figure below shows the actions taken at the directory in response to messages received. 



The directory receives three different requests: read miss, write miss, and data write back. 

When a block is in the uncached state, the copy in memory is the current value, so the only 

possible requests for that block are  

Read miss—The requesting processor is sent the requested data from memory, and the 

requester is made the only sharing node. The state of the block is made shared.  

Write miss—The requesting processor is sent the value and becomes the sharing node. The 

block is made exclusive to indicate that the only valid copy is cached. Sharers indicates the 

identity of the owner.   

When the block is in the shared state, the memory value is up to date, so the same two 

requests can occur:  

Read miss—The requesting processor is sent the requested data from memory, and the 

requesting processor is added to the sharing set.  

Write miss—The requesting processor is sent the value. All processors in the set Sharers 

are sent invalidate messages, and the Sharers set is to contain the identity of the requesting 

processor. The state of the block is made exclusive.  

When the block is in the exclusive state, the current value of the block is held in the cache 

of the processor identified by the set Sharers (the owner), so there are three possible 

directory requests:  

Read miss—The owner processor is sent a data fetch message, which causes the state of the 

block in the owner's cache to transition to shared and causes the owner to send the data to 

the directory, where it is written to memory and sent back to the requesting processor. The 

identity of the requesting processor is added to the set Sharers, which still contains the 

identity of the processor that was the owner (since it still has a readable copy).  

Data write back—The owner processor is replacing the block and therefore must write it 

back. This write back makes the memory copy up to date (the home directory essentially 

becomes the owner), the block is now uncached, and the Sharers set is empty.  

Write miss—The block has a new owner. A message is sent to the old owner, causing the 

cache to invalidate the block and send the value to the directory, from which it is sent to the 

requesting processor, which becomes the new owner. Sharers is set to the identity of the 

new owner, and the state of the block remains exclusive.  


