
Page 1 of 2

CMR

INSTITUTE OF

TECHNOLOGY

USN

Internal Assesment Test - II

 Sub: JAVA and J2EE Code: 10CS753

Date: 04 / 11 / 2016 Duration: 90 mins Max Marks: 50 Sem: VII Branch: CSE/ISE

Answer Any FIVE FULL Questions

 Marks

OBE

CO RBT

 1 (a) What is Multithreading? How Synchronization is implemented in Java, explain

with an example.

[10] CO5 L1

2 (a) List out and briefly explain the different types of database drivers. [5] CO6 L1

 (b) Discuss thread priority with an example. [5] CO5 L2

3 (a) Write a Java program to establish connection to a database and read the

contents of the table.

[10] CO6 L2

4 (a) Explain the lifecycle of the Servlet with code snippets for init(), service() and

destroy() methods.

[10] CO6 L1

5 (a) Discuss with an example how session tracking is handled in Java with Servlets. [10] CO6 L2

6 (a) Explain the mechanism of Event Delegation Model. With a program example

briefly explain handling of mouse events.

[10] CO6 L1

7 (a) Briefly explain the following

i) Event classes

ii) Event listener interface

iii) Adapter class

iv) Event sources

[10] CO6 L1

Page 2 of 2

Course Outcomes

P
O

1

P
O

2

P
O

3

P
O

4

P
O

5

P
O

6

P
O

7

P
O

8

P
O

9

P
O

1
0

P
O

1
1

P
O

1
2

CO1:

Explain of the principles of OOP -

Abstraction, Polymorphism, Inheritance,

Encapsulation. 2 1 1 1 1 - - - 1 1 - -

CO2:
Apply object oriented concepts to design

simple Java Programs 2 2 1 1 1 - - - 1 1 - -

CO3: Use Exception Handling in Java. 2 2 1 1 1 - - - 1 - - 1

CO4:
Implement User interface using Swing and

Applets 2 2 1 1 1 - - - 1 - - -

CO5:
Explain the concepts of Multithreaded

Programming in Java 2 2 1 1 1 - - - 1 - - 1

CO6:

Implement JSP Script communicate with

different databases using JDBC driver and

remote servers. 2 2 1 1 2 - - - 1 - - 1

Cognitive level KEYWORDS

L1 List, define, tell, describe, identify, show, label, collect, examine, tabulate, quote, name, who, when, where, etc.

L2 summarize, describe, interpret, contrast, predict, associate, distinguish, estimate, differentiate, discuss, extend

L3
Apply, demonstrate, calculate, complete, illustrate, show, solve, examine, modify, relate, change, classify,

experiment, discover.

L4 Analyze, separate, order, explain, connect, classify, arrange, divide, compare, select, explain, infer.

L5
Assess, decide, rank, grade, test, measure, recommend, convince, select, judge, explain, discriminate, support,

conclude, compare, summarize.

PO1 - Engineering knowledge; PO2 - Problem analysis; PO3 - Design/development of solutions;

PO4 - Conduct investigations of complex problems; PO5 - Modern tool usage; PO6 - The Engineer and society; PO7-

Environment and sustainability; PO8 – Ethics; PO9 - Individual and team work;

PO10 - Communication; PO11 - Project management and finance; PO12 - Life-long learning

Page 1 of 17

CMR

INSTITUTE OF

TECHNOLOGY

USN

Internal Assesment Test - II

Sub: JAVA and J2EE Code: 10CS753

Date: 04 / 11 / 2016 Duration: 90 mins Max Marks: 50 Sem: VII Branch: CSE/ISE

Answer Any FIVE FULL Questions

 Marks
OBE

CO RBT

1(a) What is Multithreading? How Synchronization is implemented in Java, explain

with an example.

[10] CO5 L1

Soln. Multithreading is a conceptual programming concept where a program (process)

is divided into two or more subprograms (process), which can be implemented

at the same time in parallel. A multithreaded program contains two or more

parts that can run concurrently. Each part of such a program is called a thread,

and each thread defines a separate path of execution. A process consists of the

memory space allocated by the operating system that can contain one or more

threads. A thread cannot exist on its own; it must be a part of a process.

When two or more threads need access to a shared resource, they need some

way to ensure that the resource will be used by only one thread at a time. The

process by which this synchronization is achieved is called thread

synchronization. The synchronized keyword in Java creates a block of code

referred to as a critical section. Every Java object with a critical section of code

gets a lock associated with the object. To enter a critical section, a thread needs

to obtain the corresponding object's lock.

 Example without Synchronization

Page 2 of 17

Page 3 of 17

Example withSynchronization

2 (a) List out and briefly explain the different types of database drivers. [5] CO6 L1

Soln. JDBC driver implementations vary because of the wide variety of

operating systems and hardware platforms in which Java operates. Sun

has divided the implementation types into four categories, Types 1, 2, 3,

and 4.

Type 1: JDBC-ODBC Bridge Driver

 In a Type 1 driver, a JDBC bridge is used to access ODBC drivers

installed on each client machine. Using ODBC, requires configuring on

your system a Data Source Name (DSN) that represents the target

database.

 When Java first came out, this was a useful driver because most

databases only supported ODBC access but now this type of driver is

Page 4 of 17

recommended only for experimental use or when no other alternative is

available.

Type 2: JDBC-Native API

 In a Type 2 driver, JDBC API calls are converted into native C/C++ API

calls, which are unique to the database. These drivers are typically

provided by the database vendors and used in the same manner as the

JDBC-ODBC Bridge. The vendor-specific driver must be installed on

each client machine.

 If we change the Database, we have to change the native API, as it is

specific to a database and they are mostly obsolete now, but you may

realize some speed increase with a Type 2 driver, because it eliminates

ODBC's overhead.

Type 3: JDBC-Net pure Java

 In a Type 3 driver, a three-tier approach is used to access databases. The

JDBC clients use standard network sockets to communicate with a

middleware application server. The socket information is then translated

by the middleware application server into the call format required by the

DBMS, and forwarded to the database server.

 This kind of driver is extremely flexible, since it requires no code

installed on the client and a single driver can actually provide access to

multiple databases.

Type 4: 100% Pure Java

 In a Type 4 driver, a pure Java-based driver communicates directly with

the vendor's database through socket connection. This is the highest

performance driver available for the database and is usually provided by

the vendor itself.

 This kind of driver is extremely flexible, you don't need to install special

software on the client or server. Further, these drivers can be downloaded

dynamically.

(b) Discuss thread priority with an example. [5] CO5 L2

Soln. Every Java thread has a priority that helps the operating system determine the

order in which threads are scheduled. Thread priorities are integers that

specify the relative priority of one thread to another. As an absolute value, a

priority is meaningless; a higher-priority thread doesn’t run any faster than a
lower-priority thread if it is the only thread running. Instead, a thread’s
priority is used to decide when to switch from one running thread to the next.

This is called a context switch.

Page 5 of 17

 A thread can voluntarily relinquish control. This is done by explicitly

yielding, sleeping, or blocking on pending I/O. In this scenario, all other

threads are examined, and thehighest-priority thread that is ready to run

is given the CPU.

 A thread can be preempted by a higher-priority thread. In this case, a

lower-priority thread that does not yield the processor is simply

preempted—no matter what it is doing— by a higher-priority thread.

Basically, as soon as a higher-priority thread wantsto run, it does. This is

called preemptive multitasking.

 Java priorities are in the range between MIN_PRIORITY (a constant

of 1) and MAX_PRIORITY (a constant of 10). By default, every

thread is given priority NORM_PRIORITY (a constant of 5).

 Threads with higher priority are more important to a program and

should be allocated processor time before lower-priority threads.

However, thread priorities cannot guarantee the order in which threads

execute and very much platform dependent.

3(a) Write a Java program to establish connection to a database and read the

contents of the table.

[10] CO6 L2

Soln.

Page 6 of 17

4 (a) Explain the lifecycle of the Servlet with code snippets for init(), service() and

destroy() methods.

[10] CO6 L1

Soln. Each servlet has the same life cycle:

• A server loads and initializes the servlet [init() method]

• The servlet handles zero or more client requests [service() method]

• The server removes the servlet (some servers do this step only when they shut

down)[destroy() method]

Step 1: A user enters a URL to a browser. The browser generates an HTTP

request for this URL and this request is sent to the appropriate server.

Step 2: The HTTP request is received by the web server. The server maps this

request to aparticular servlet. This servlet is dynamically retrieved and loaded

into the server.

Step 3: The server invokes the init() method of the servlet. This method is

invoked only when the servlet is first loaded into the memory. We can pass

Page 7 of 17

initialization parameters to the servlet.

Step 4: The server invokes the service() method of the servlet. This method is

called toprocess the request HTTP request. The servlet can read data that has

been provided in the HTTPrequest. The service method can also create a HTTP

response for the client. The servlet remains in the server’s address space and is
available to process any other requests from other clients.The service method is

called for each request.

Step 5: The server calls the destroy() method when a servlet has to be

unloaded from the server memory. Once this method is called, the servlet will

give up all file handles that wereallotted to it. Important data may be saved to a

persistent store. The memory allocated tothe servlet and its objects is released.

import java.io.*;

import javax.servlet.*;

public class HelloServlet extends GenericServlet

{

 public void init()

 {

 System.out.println(“Servlet Initiated”);
 }

 public void service(ServletRequest request, ServletResponse response)

 throws ServletException, IOException

 {

 response.setContentType("text/html");

 PrintWriter pw = response.getWriter();

 pw.println("Hello!");

 pw.close();

 }

 public void destroy()

 {

 System.out.println(“Servlet destroyed”);
 }

}

5 (a) Discuss with an example how session tracking is handled in Java with Servlets. [10] CO6 L2

 1. HTTP is a stateless protocol. Each request is independent of the previous one.

But in some applications such as online shopping, banking, etc, it is necessary to

save the state information so that the information can be collected from the user

over several interactions. Sessions provide this mechanism.

2. A session can be created by the getSession() method of HttpServletRequest.

This method returns an HttpSession object. The setAttribute(), getAttribute(),

Page 8 of 17

removeAttribute() and getAttributeNames() methods of the HttpSession manage

the bindings between the names and objects.

import java.io.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http;

public class DateServlet extends HttpServlet

{

 public void doGet(HttpServletreq, HttpResponse res) throws

ServletException, IOException

 {

 //get the http response object

 HttpSessionhs = req.getSession(true);

 //get writer

 res.setContentType("text/html");

 PrintWriter out = res.getWriter();

 //Display date and time of last access

 Date dt = (Date) hs.getAttribute("date");

 if(dt != null)

 {

 out.println("Last access was on " + dt);

 }

 //display current date dt =

 new Date();

 hs.setAttribute("date", dt);

 out.println("Current date is : " + dt);

 }

}

Cookies:

1. Cookies are small files which are stored on a user’s computer by the server.

2. They can hold small amounts of data for a specific client and website.

3. Cookies can be accessed either by the web server or the client computer. The

server can send a page custom-made for a particular client, or location, or time of

day. Thus, we can say that cookies are used for session management.

4. A cookie can be read back by the server. Thus the server can “remember” the
client. This is important because HTTP itself is a stateless protocol. Once the

data is delivered by the server to the client browser, the server will not keep any

further information about the client.

5. Cookies have a name and a single value. They may have optional attributes

such as version number, expiry date, a comment for the user, etc.

6. Cookies are assigned by the server to the client. They is sent using fieldsadded

to the HTTP response header. Cookies are passed back to the server using fields

added to the HTTP request headers.

import java.io.*;

Page 9 of 17

import javax.servlet.*;

import javax.servlet.http.*;

public class FirstServlet extends HttpServlet {

 public void doPost(HttpServletRequest request, HttpServletResponse

response){

 try{

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 String n=request.getParameter("userName");

 out.print("Welcome "+n);

 Cookie ck=new Cookie("uname",n);//creating cookie object

 response.addCookie(ck);//adding cookie in the response

 //creating submit button

 out.print("<form action='servlet2'>");

 out.print("<input type='submit' value='go'>");

 out.print("</form>");

 out.close();

}catch(Exception e){System.out.println(e);}

 }

}

6 (a) Explain the mechanism of Event Delegation Model. With a program example

briefly explain handling of mouse events.

[10] CO6 L1

Soln. Event Handling is the mechanism that controls the event and decides what

should happen if an event occurs. This mechanism have the code which is

known as event handler that is executed when an event occurs. Java Uses

the Delegation Event Model to handle the events. This model defines the

standard mechanism to generate and handle the events. The Delegation

Event Model has the following key participants namely:

1. Source - The source is an object on which event occurs. Source is

responsible for providing information of the occurred event to its handler.

Java provide as with classes for source object.

2. Listener - It is also known as event handler. Listener is responsible for

generating response to an event. From java implementation point of view

the listener is also an object. Listener waits until it receives an event. Once

the event is received, the listener process the event then returns.

Page 10 of 17

The benefit of this approach is that the user interface logic is completely

separated from the logic that generates the event. The user interface

element is able to delegate the processing of an event to the separate piece

of code. In this model, Listener needs to be registered with the source object

so that the listener can receive the event notification. This is an efficient

way of handling the event because the event notifications are sent only to

those listeners that want to receive them.

Mouse Events Program

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

<applet code="MouseEvents" width=300 height=100>

</applet>

*/

public class MouseEvents extends Applet

implements MouseListener, MouseMotionListener

{

 String msg = "";

 intmouseX = 0, mouseY = 0; // coordinates of mouse

 public void init()

 {

 addMouseListener(this);

 addMouseMotionListener(this);

 }

// Handle mouse clicked.

 public void mouseClicked(MouseEvent me)

 {

 // save coordinates

 mouseX = 0;

 mouseY = 10;

 msg = "Mouse clicked.";

 repaint();

Page 11 of 17

 }

 // Handle mouse entered.

 public void mouseEntered(MouseEvent me)

 {

 // save coordinates

 mouseX = 0;

 mouseY = 10;

 msg = "Mouse entered.";

 repaint();

 }

 // Handle mouse exited.

 public void mouseExited(MouseEvent me)

 {

 // save coordinates

 mouseX = 0;

 mouseY = 10;

 msg = "Mouse exited.";

 repaint();

 }

 // Handle button pressed.

 public void mousePressed(MouseEvent me)

 {

 // save coordinates

 mouseX = me.getX();

 mouseY = me.getY();

 msg = "Down";

 repaint();

 }

 // Handle button released.

 public void mouseReleased(MouseEvent me)

 {

 // save coordinates

 mouseX = me.getX();

 mouseY = me.getY();

Page 12 of 17

 msg = "Up";

 repaint();

 }

 // Handle mouse dragged.

 public void mouseDragged(MouseEvent me)

 {

 // save coordinates

 mouseX = me.getX();

 mouseY = me.getY();

 msg = "*";

 showStatus("Dragging mouse at " + mouseX + ", " + mouseY);

 repaint();

 }

 // Handle mouse moved.

 public void mouseMoved(MouseEvent me)

 {

 // show status

 showStatus("Moving mouse at " + me.getX() + ", " + me.getY());

 }

 // Display msg in applet window at current X,Y location.

 public void paint(Graphics g)

 {

 g.drawString(msg, mouseX, mouseY);

 }

}

7 (a)

Briefly explain the following

[10]

CO6

L1

Soln.

i) Event classes

 The class AWTEvent, defined within the java.awtpackage, is a

subclass of EventObject. It is the superclass (either directly or

indirectly) of all AWT-based events used by the delegation event

Page 13 of 17

model. Its getID()method can be used to determine the type of the

event.

 The ActionEvent Class

An ActionEventis generated when a button is pressed, a list item is

double-clicked, or a menu item is selected. The ActionEventclass defines

four integer constants that can be used to identify any modifiers

associated with an action event: ALT_MASK, CTRL_MASK,

META_MASK, and SHIFT_MASK. In addition, there is an integer

constant, ACTION_PERFORMED, which can be used to identify

action events.

 The AdjustmentEvent Class

An AdjustmentEventis generated by a scroll bar. There are five types of

adjustment events. The AdjustmentEventclass defines integer constants

that can be used to identify them.

 The ComponentEvent Class

A ComponentEventis generated when the size, position, or visibility of a

component is changed. There are four types of component events. The

ComponentEventclass defines integer constants that can be used to

identify them.

Page 14 of 17

 The ContainerEvent Class

A ContainerEventis generated when a component is added to or

removed from a container. There are two types of container events. The

ContainerEventclass defines intconstants that can be used to identify

them: COMPONENT_ADDED and COMPONENT_REMOVED.

They indicate that a component has been added to or removed from the

container. ContainerEventis a subclass of ComponentEventand has this

constructor:

ContainerEvent(Component src, inttype, Component comp)

Here, srcis a reference to the container that generated this event. The

type of the event is specified by type, and the component that has been

added to or removed from the container is comp.

 The FocusEvent Class

A FocusEventis generated when a component gains or loses input focus.

These events are identified by the integer constants FOCUS_GAINED

and FOCUS_LOST. FocusEventis a subclass of ComponentEventand

has these constructors:

FocusEvent(Component src, inttype)

FocusEvent(Component src, inttype, booleantemporaryFlag)

FocusEvent(Component src, inttype, booleantemporaryFlag, Component other)

Here, srcis a reference to the component that generated this event. The type

of the event is specified by type. The argument temporaryFlagis set to true

if the focus event is temporary. Otherwise, it is set to false. (A temporary

focus event occurs as a result of another user interface operation. For

example, assume that the focus is in a text field. If the user moves the mouse

to adjust a scroll bar, the focus is temporarily lost.) The other component

involved in the focus change, called the opposite component, is passed in

other. Therefore, if a FOCUS_GAINED event occurred, other will refer to

the component that lost focus. Conversely, if a FOCUS_LOST event

occurred, other will refer to the component that gains focus.

ii) Event listener interface

 The delegation event model has two parts: sources and listeners. Listeners

arecreated by implementing one or more of the interfaces defined by the

java.awt.eventpackage. When an event occurs, the event source invokes the

appropriate method defined by the listener and provides an event object as its

argument.

Page 15 of 17

 The ActionListener Interface

 This interface defines the actionPerformed()method that is invoked when an

action event occurs.

 The ComponentListener Interface

This interface defines four methods that are invoked when a component is resized,

moved,shown, or hidden. Their general forms are shown here:

void componentResized(ComponentEventce)

void componentMoved(ComponentEventce)

void componentShown(ComponentEventce)

void componentHidden(ComponentEventce)

 The ContainerListener Interface

This interface contains two methods. When a component is added to a

container,componentAdded()is invoked. When a component is removed from a

container,componentRemoved()is invoked. Their general forms are shown here:

void componentAdded(ContainerEventce)

void componentRemoved(ContainerEventce)

 The FocusListener Interface

This interface defines two methods. When a component obtains keyboard focus,

focusGained()is invoked. When a component loses keyboard focus, focusLost()is

called. Their generalforms are shown here:

void focusGained(FocusEventfe)

void focusLost(FocusEventfe)

 iii) Adapter class

 Adapter classes are used to simplify the process of event handling in

Java. As we know that when we implement any interface all the

methods defined in that interface needs to be override in the class,

which is not desirable in the case of Event Handling.

 Adapter classes are useful as they provide empty implementation of

all methods in an event listener interface. In this you can define a

new class to act as event listener by extending one of the adapter

Page 16 of 17

classes and implementing only those methods that you want to use in

your program.

 Adapter classes are useful when you want to receive and process

only some of the events that are handled by a particular event listener

interface. You can define a new class to act as an event listener by

extending one of the adapter classes and implementing only those

events in which you are interested.

 For example, the MouseMotionAdapterclass has two methods,

mouseDragged()and mouseMoved(), which are the methods

defined by the MouseMotionListenerinterface. If you were

interested in only mouse drag events, then you could simply extend

MouseMotionAdapterand override mouseDragged(). The empty

implementation of mouseMoved()would handle the mouse motion

events.

 iv) Event sources

 Asourceis an object that generates an event. This occurs when the

internal state of that objectchanges in some way. Sources may

generate more than one type of event. Asource must register listeners

in order for the listeners to receive notifications about a specific type

of event. Each type of event has its own registration method.

public void addTypeListener(TypeListenerel)

 Type is the name of the event, and el is a reference to the event

listener. For example, the method that registers a keyboard event

listener is called addKeyListener(). When an event occurs, all

registered listeners are notified and receive a copy of the event object.

This is known as multicasting the event. Notifications are sent only to

listeners that register to receive them. Some sources may allow only

one listener to register.

public void addTypeListener(TypeListenerel)

throwsjava.util.TooManyListenersException

 Type is the name of the event, and el is a reference to the event

listener. When such an event occurs, the registered listener is notified.

This is known as unicasting the event. A source must also provide a

method that allows a listener to unregister an interest in a specific type

of event.

public void removeTypeListener(TypeListenerel)

 Type is the name of the event, and el is a reference to the event

listener. For example, to remove a keyboard listener, you would call

removeKeyListener(). The methods that add or remove listeners are

Page 17 of 17

provided by the source that generates events.

Course Outcomes

P
O

1

P
O

2

P
O

3

P
O

4

P
O

5

P
O

6

P
O

7

P
O

8

P
O

9

P
O

1
0

P
O

1
1

P
O

1
2

CO1:

Explain of the principles of OOP -

Abstraction, Polymorphism, Inheritance,

Encapsulation. 2 1 1 1 1 - - - 1 1 - -

CO2:
Apply object oriented concepts to design

simple Java Programs 2 2 1 1 1 - - - 1 1 - -

CO3: Use Exception Handling in Java. 2 2 1 1 1 - - - 1 - - 1

CO4:
Implement User interface using Swing and

Applets 2 2 1 1 1 - - - 1 - - -

CO5:
Explain the concepts of Multithreaded

Programming in Java 2 2 1 1 1 - - - 1 - - 1

CO6:

Implement JSP Script communicate with

different databases using JDBC driver and

remote servers. 2 2 1 1 2 - - - 1 - - 1

Cognitive level KEYWORDS

L1 List, define, tell, describe, identify, show, label, collect, examine, tabulate, quote, name, who, when, where, etc.

L2 summarize, describe, interpret, contrast, predict, associate, distinguish, estimate, differentiate, discuss, extend

L3
Apply, demonstrate, calculate, complete, illustrate, show, solve, examine, modify, relate, change, classify,

experiment, discover.

L4 Analyze, separate, order, explain, connect, classify, arrange, divide, compare, select, explain, infer.

L5
Assess, decide, rank, grade, test, measure, recommend, convince, select, judge, explain, discriminate, support,

conclude, compare, summarize.

PO1 - Engineering knowledge; PO2 - Problem analysis; PO3 - Design/development of solutions;

PO4 - Conduct investigations of complex problems; PO5 - Modern tool usage; PO6 - The Engineer and society; PO7-

Environment and sustainability; PO8 – Ethics; PO9 - Individual and team work;

PO10 - Communication; PO11 - Project management and finance; PO12 - Life-long learning

