CMR ‘
INSTITUTE OF USN
TECHNOLOGY ‘
Internal Assesment Test - II CMR
Sub: C# with NET Code: 10CS761
Date: 04/11/2016 . Duration: 90 mins Max Marks: |50 Sem: 7 Branch: |CSE/ISE
Answer Any FIVE FULL Questions
OBE
Questions Marks | CO RBT
List different methods of Sytem.Exception class? With program explain the use of try,
1 catch and finally keyword? 10 co2 | 11
With program illustrate generic exception, finally block, multiple catch and inner
2 exception? 10 Co2 | L3
3 With program illustrate the use of interface as parameter and return values? 10 Cco4 | L3
Difference between interface and abstract class? Write a note on IEnumerable and
4 TEnumerator interfaces? 10 Co4 | L2
5 Write program explain ICloneable, IComparer and IComparable interfaces? 10 CO4 | L5
6 Write a note on basics of object lifetime and object generations? 10 CO2 | L2
7 With Program explain finalizable and disposable objects in object lifetime? 10 oz | L3
8 Write a note on delegate concept? 10 Co4 | L2

Page 1 of 2

Course Outcomes

PO1
PO2
PO3
PO4
PO5
PO6
PO7
PO8
PO9
PO10
PO11
PO12

CO1: Explain structure of C# application. = . 1 2 g} - - 1 = = - 2

Explaih CH# Languévge Fundamentals, the role of
CO2: exception handling and the basics of Garbage

Collection process 1] 2 2 - - - - - - s
CO3: Develop simple C# applications using Object
Oriented features. - 1 1 1 - - - - - - - 3
5 Explain Interfaces, Delegates and Events using
L CO4: |
simple programs. - 1 1 - - - - - - - 1 2
COs: Exploring System. Collections and namespaces
- to build custom container 1 1 1 - 2 - - - - - - 1
CO6: Design and Develop Mobile Application using
" | .NET Assembles 1 1 2 2 2 - - - - - - 2
Cognitive level KEYWORDS ‘
24| List, define, tell, describe, identify, show, label, collect, examine, tabulate, quote, name, who, when, where, etc.
L2 summarize, describe, interpret, contrast, predict, associate, distinguish, estimate, differentiate, discuss, extend
L3 Apply, demonstrate, calculate, complete, illustrate, show, solve, examine, modify, relate, change, classify, experiment,
discover.
L4 Analyze, separate, order, explain, connect, classify, arrange, divide, compare, select, explain, infer.
L5 Assess, decide, rapk, grade, test, measure, recommend, convince, select, judge, explain, discriminate, support, conclude,
compare, summarize.
POl - Engineering knowledge; PO2 - Problem analysis; PO3 - Design/development of solutions;
PO4 - Conduct investigations of complex problems; PO5 - Modern tool usage; PO6 - The Engineer and society; PO7- Environment and
sustainability;, POS8 - Ethics; PO9 - Individual and team work;
PO10 - Communication; PO11 - Project management and finance; PO12 - Life-long learning

Page 2 of 2

1. List different methods of Sytem.Exception class? With program explain the use of try,

catch and finally keyword?

System.Exception Property

Meaning in Life

Data

This property retrieves a collection of key/value
pairs (represented by an object implementing
IDictionary) that provides additional,
programmer-defined information about the
exception.

By default, this collection is empty (e.g., null).

HelpLink

This property returns a URL to a help file or
website describing the error in full detail.

InnerException

This read-only property can be used to obtain
information about the previous exception(s) that
caused the current exception to occur.

The previous exception(s) are recorded by passing
them into the constructor of the most current
exception.

Message

This read-only property returns the textual
description of a given error. The error message
itself is set as a constructor parameter.

Source

This property returns the name of the assembly
that threw the Exception.

StackTrace

This read-only property contains a string that
identifies the sequence of calls that triggered the
exception.

As you might guess, this property is very useful
during debugging if you wish to dump the error to
an external error log.

TargetSite

This read-only property returns a MethodBase
type, which describes numerous details about the
method that threw the exception (invoking
ToString() will identify the method by name).

InnerException

This read-only property can be used to obtain
information about the previous exception(s) that

caused the current exception to occur.

2. With program illustrate generic exception, finally block, multiple catch and inner

exception?

static void Main(string[] args)

{

Console.WriteLine("***** Handling Multiple Exceptions *****\n");
Car myCar = new Car("Rusty", 90);

myCar.CrankTunes(true);

try

{

// Speed up car logic.

}
catch(CarlsDeadException e)

{

// Process CarlsDeadException.

}
catch(ArgumentOutOfRangeException e)

{
// Process ArgumentOutOfRangeException.

}

catch(Exception e)

{

// Process any other Exception.

}
finally

{

// This will always occur. Exception or not.
myCar.CrankTunes(false);

}
Console.WriteLine();

}

3. With program illustrate the use of interface as parameter and return values?
Explicit interface implementation can also be very helpful whenever you are implementing a
number of interfaces that happen to contain identical members. For example, assume you wish to

create a class that implements all the following new interface types:

public interface

{

void Draw();

}

public interface IDrawToPrinter

{

void Draw();

}

If you wish to build a class named Superlmage that supports basic rendering (IDraw), 3D
rendering (IDraw3D), as well as printing services (IDrawToPrinter), the only way to
provide unique implementa

implementation:

// Not deriving from Shape, but still injecting a name clash.
public class SuperImage : [Draw, IDrawToPrinter, IDraw3D
{

void IDraw.Draw()

{ /* Basic drawing logic. */ }

void IDrawToPrinter.Draw()

{ /* Printer logic. */ }

void IDraw3D.Draw()

{ /* 3D rendering logic. */ }

}

4. Difference between interface and abstract class? Write a note on IEnumerable and
IEnumerator interfaces?

Consider an example below to explain the use of [Enumerable and I[Enumerator:
//Car is a container of car objects......

Public class Car

{

Private Car[] CarArray;

//Create some car objects upon startup...................
Public Cars()

{

CarArray = new[4];

CarArray[0] = new Car(“FeeFee”, 200, 0);
CarArray[1] = new Car(“Clunker”, 300, 0);
CarArray[2] = new Car(“Zippy”, 30,0);

}

}

Below method is defined by the IEnumerable interface type:
Public interface IEnumerable

{

IEnumerable GetEnumerator();

}

//IEnumerable defines a single method
Public IEnumerable GetEnumerator ()

{
///Ok, now what............ ?

}

Now, Given that IEnumerable.GetEnumerator() returens an IEnumerator interface, you may update
the cars type as shown below:

//Getting closer....

Public class cars: IEnumerable, IEnumerator

//Implementing an [Enumerable......
Public IEnumerator GetEnumerator()

{

Return(IEnumerator) this;

}
}

5. With program explain ICloneable, IComparer and IComparable interfaces?
System.Objectdefines a member named MemberwiseClone (). This method Object users do not
call this method directly (as it is protected); however, a given object may call this method itself
during the cloning process. To illustrate, assume you have a class named Point:

/I A class named Point.

public class Point

{

// Public for easy access.

public int x, y;

public Point(int X, int y) { this.x = x; this.y = y;}

public Point(){ }

// Override Object. ToString().

public override string ToString()

{ return string.Format("X = {0}; Y={1}",X,y); }

}

Given what you already know about reference types and value types, you are aware that if you
assign one reference variable to another, you have two references pointing to the same object in
memory. Thus, the following assignment operation Point object on the heap; modifications using
either reference affect the same object on the heap:

static void Main(string[] args)

{

/l Two references

Point p1 = new Point(50, 50);

Point p2 = pl;
p2.x =0;
Console.WriteLine(p1);

Console.WriteLine(p2);
}

When you wish to equip your custom types to support the ability to return an identical copy of
itself to the caller, you may implement the standard ICloneable interface. This type defines a
single method named Clone():

public interface ICloneable

{
Object Clone();
}

The System.IComparable interface specifies a behavior that allows an object to be sorted based
on some specified key. Here is the formal definition:

// This interface allows an object to specify its

// relationship between other like objects.

public interface IComparable{

int CompareTo(object 0);

}

{

// IComparable implementation.

int [Comparable.CompareTo(object obj){
Car temp = (Car)obj;

if(this.carID > temp.carID)

return 1;

if(this.carID < temp.carID)

return -1;

else

return O;

}
}

6. Write a note on basics of object lifetime and object generations?
In C# with .NET programming language, programmers never directly deallocate an object from

memory. Instead, .NET objects are allocated onto a region of memory termed “Managed Heap”,

where they will be automatically deallocated by the runtime at “some time” in the feature. The
garbage collector removes an object from the heap when it is unreachable by any part of your code

base.

When the CLR is attempting to locate unreachable objects, is does noft literally examine each and
every object placed on the managed heap. Obviously, doing so would involve considerable time,
especially in larger (i.e., real-world) applications. To help optimize the process, each object on
the heap is assigned to a specific “generation.”The idea behind generations is simple: The longer
an object has existed on to stay there. For example, the object implementing Main() will be in
memory until the program terminates. Conversely, objects that have been recently placed on the
heap are likely to be unreachable rather quickly (such as an object created within a method
scope). Given these assumptions, each object on the heap belongs to one of the following
generations:

e Generation 0. Identifies a newly allocated object that has never been marked for
Collection.

e Generation I: Identifies an object that has survived a garbage collection (i.e., it was
marked for collection, but was not removed due to the fact that the sufficient heap space
was acquired)

e Generation 2: Identifies an object that has survived more than one sweep of the garbage
collector The garbage collector will investigate all generation O objects first. If marking
and sweeping these objects results in the required amount of free memory, any surviving
objects are promoted to generation 1. To illustrate how an object’s generation affects the

collection process.

7. With Program explain finalizable and disposable objects in object lifetime?
The role of the Finalize () method is to ensure that a .NET object can clean up unmanaged
resources when garbage collected. Thus, if you are building a type that does not make use of
unmanaged entities (by far the most common case), finalization is of little use. In fact, if at all
possible, you should design your types to avoid supporting finalize () method for the very simple
reason that finalization takes time.

e When you allocate an object onto the managed heap, the runtime automatically

determines whether your object supports a custom Finalize () method. If so, the object is

marked as finalizable and a pointer to this object is stored on an internal queue named the
finalization queue. The finalization queue is a table maintained by the garbage collector
that points to each and every object that must be finalized before it is removed from the
heap.

e When the garbage collector determines it is time to free an object from memory, it
examines each entry on the finalization queue, and copies the object off the heap to yet
another managed structure termed the finalization reachable table (often abbreviated as
freachable, and pronounced “eff-reachable”).

e At this point, a separate thread is spawned to invoke the Finalize () method for each
object on the freachable table at the next garbage collection. Given this, it will take at
very least two garbage collections to truly finalize an object. The bottom line is that while
finalization of an object does ensure an object can clean up unmanaged resources, it is

still nondeterministic in nature.

Disposable objects
The Main Objective of Disposable Object:

It is an optional, standard way to provide "a method that releases allocated unmanaged
resources".

So what does that actually mean? Well, if you're using unmanaged resources,and you keep those
resources allocated throughout the lifetime of your object then you should implement
IDisposable.Therefore using that the Developers who use this class can then call Dispose if they
wish to free these resources early, before your object falls out of scope.

Before doing that,the user should define a class that inherits dispose() method,which is done as
follows:

e.g. class MyDisposableClass:IDisposable

After this you need to define a method and inside it keep the resource(s) which you want to use
regularly without having to call it everytime.

Important Points:

1)The pattern for disposing an object, referred to as a dispose pattern, imposes order on the
lifetime of an object. The dispose pattern is used only for objects that access unmanaged
resources. This is because the garbage collector is very efficient at reclaiming unused managed
objects.

2)Using a Disposable object a Dispose method could be callable multiple times without throwing
an exception.

3)Using Dispose() method we dont need to call Close() method explicitly.
Furthermore the main function of using block is to call the dispose() method.

Simple e.g showing the use of Disposable object:

using System,;
using System.lO;

namespace Disposable

{
class Disp : IDisposable

{

public void Dispose()

{

Console.WriteLine("I am disposed \n");
}

}

public class MyDisposableClass

{

static void Main(string[] args)

{

using (Disp d = new Disp())

{

Console.WriteLine("Inside using block\n");

}

Console.WriteLine("Outside using block\n");
}

}

}

Its outputs:

Inside using block

I'm disposed

outside using block

using System,;

using System.Collections.Generic;
using System.Text;

class Program {
static void Main(string[] args) {
using (MyResourceWrapper rw = new MyResourceWrapper()) {

}

MyResourceWrapper rw2 = new MyResourceWrapper();
for (inti=0;1<10; i++)
rw2.Dispose();

}
}

public class MyResourceWrapper : IDisposable {
public void Dispose() {
Console.WriteLine("In Dispose() method!");

}
}

8. Write a note on delegates?

Historically speaking, the Windows API makes frequent use of C-style function pointers to
create entities termed callback functions or simply callbacks. Using callbacks, programmers
were able to configure one function to report back to (call back) another function in the
application. The problem with standard C-style callback functions is that they represent little
more than a raw address in memory. Ideally, callbacks could be configured to include additional
type-safe information such as the number of (and types of) parameters and the return value (if
any) of the method pointed to. Sadly, this is not the case in traditional callback functions, and, as
you may suspect, can therefore be a frequent source of bugs, hard crashes, and other runtime
disasters. Nevertheless, callbacks are useful entities. In the .NET Framework, callbacks are still
possible, and their functionality is accomplished in a much safer and more object oriented
manner using delegates. In essence, a delegate is a type-safe object that points to another method
(or possibly multiple methods) in the application, which can be invoked at a later time.
Specifically speaking, a delegate type maintains three important pieces of information:

* The name of the method on which it makes calls

* The arguments (if any) of this method

* The return value (if any) of this method

Defining a Delegate in C#

When you want to create a delegate in C#, you make use of the delegate keyword. The name of
your define the delegate to match the signature of the method it will point to. For example,
assume you wish to build a delegate named BinaryOp returns an integer and takes two integers
as input parameters: // This delegate can point to any method,

// taking two integers and returning an

/l integer.

public delegate int BinaryOp(int X, int y);

When the C# compiler processes delegate types, it automatically generates a sealed ing from
System.MulticastDelegate. This class (in conjunction with its base class, System.Delegate)
provides the necessary infrastructure for the delegate to hold onto the list of methods to be

invoked BinaryOp delegate using ildasm.exe

