
Page 1 of 1

CMR

INSTITUTE OF

TECHNOLOGY

USN

Sub: Data Structures and Applications Code: 15CS33

Date: 03 / 11 / 2016 Duration: 90 mins Max Marks: 50 Sem: 3-A,B Branch: CSE

Marks

Distribution

 Max

Marks

1 (a) disadvantage of ordinary queue and how it is overcome in circular queue [2] 2 10

(b) Circular queue : addq function [4] 8

deleteq function [4]

2 Operations of Dequeue : insert front, insert rear [5] 10 10

delete front, delete rear [5]

3 (a) Example for the representation of two polynomials [2] 4 10

Example for addition of two polynomials using linked list representation. [2]

(b) C function for addition of two polynomials using linked list [6] 6

4 (a) doubly linked lists: advantages [2] 4 10

disadvantages [2]

(b) Write a C function to delete a node from a doubly linked list. "ptr" is the

pointer which points to the node to be deleted. Assume that there are nodes

on either side of the node to be deleted.

[6] 6

5 Give the node structure to create a linked list of integers and write a C function to

perform the following

i) Create a three node list with data 10,20,30

ii) Insert a node with data value 15 in between the nodes having the

data values 10 and 20.

iii) Delete the node which is followed by a node whose data value is 20.

iv) Display the resulting single linked list

[2]

[2]

[2]

[2]

[2]

10 10

6 Example of binary tree: array representation [5] 10 10

 linked representation [5]

7 With reference to the fig , answer the

following

a. Is it a binary tree?

b. Is it a complete tree?

c. Give the preorder traversal

d. Give the inorder traversal

e. Give the postorder traversal

[2]

[2]

[2]

[2]

[2]

10 10

8 (a) Explain threaded binary tree. [4] 4 10

(b) Algorithm for inorder,

 postorder

preorder traversal

[2]

[2]

[2]

6

1 (a) Give the disadvantage of ordinary queue and how it is overcome in circular queue

(b) Implement addq and deleteq functions for the circular queue

2 Give the implementation of the operations of Dequeue

3 (a) Explain with suitable example the addition of two polynomials using linked list representation.

(b) Write a C function for addition of two polynomials using linked list

4 (a) Describe the doubly linked lists with advantages and disadvantages.

(b) Write a C function to delete a node from a doubly linked list. "ptr" is the pointer which points

to the node to be deleted. Assume that there are nodes on either side of the node to be deleted.

5 Give the node structure to create a linked list of integers and write a C function to perform the

following

i) Create a three node list with data 10,20,30

ii) Insert a node with data value 15 in between the nodes having the data values 10 and 20.

iii) Delete the node which is followed by a node whose data value is 20.

iv) Display the resulting single linked list

6 With an example show array representation and linked representation of binary tree.

7 With reference to the fig , answer the following

a. Is it a binary tree?

b. Is it a complete tree?

c. Give the preorder traversal

d. Give the inorder traversal

e. Give the postorder traversal

a. Yes

b. No

c. 9,8,6,5,7,4

d. 6,8,5,9,7,4

e. 6,5,8,4,7,9

8 (a) Explain threaded binary tree.

a threaded binary tree is a binary tree variant that allows fast traversal: given a pointer to a

node in a threaded tree, it is possible to cheaply find its in-order successor (and/or predecessor).

Algorithm traverse(t):

 Input: a pointer t to a node (or nil)

 If t = nil, return.

 Else:

o traverse(left-child(t))

o Visit t

o traverse(right-child(t)

(b) Give the algorithm for inorder, postorder and preorder traversal

Algorithm Inorder(tree)

 1. Traverse the left subtree, i.e., call Inorder(left-subtree)

 2. Visit the root.

 3. Traverse the right subtree, i.e., call Inorder(right-subtree)

Algorithm Preorder(tree)

 1. Visit the root.

 2. Traverse the left subtree, i.e., call Preorder(left-subtree)

 3. Traverse the right subtree, i.e., call Preorder(right-subtree)

Algorithm Postorder(tree)

 1. Traverse the left subtree, i.e., call Postorder(left-subtree)

 2. Traverse the right subtree, i.e., call Postorder(right-subtree)

 3. Visit the root.

https://en.wikipedia.org/wiki/Binary_tree
https://en.wikipedia.org/wiki/Pointer_%28computer_programming%29
https://en.wikipedia.org/wiki/In-order_traversal

