

Internal Assesment Test - II

Sub:	Operating Sys	tems										Cod	e:	10CS	53	
Date:	03/11/16		Du	ration:	90 m	ins	Max N	Aarks:	50	Sem:	V	Brar	nch:	ISE		
Answer Any FIVE FULL Questions																
													N 1		OBE	
													Marl	C	С	RBT
1(a)	Consider the fo ,2 ,3,6.How malgorithms assu	any	page	fault						2 ,1 ,2 ,3 Optimal			[05M	f] CO	3	L3
(b)	-										f the	[05]	M]CO	3	L3	
(c)											M]CO	3	L1			
2(a)	(a) What is page fault? With the help of a neat diagram explain the procedure for handling [06 M a Page fault.										M]CO	3	L1			
(b)	Explain basic co	oncept	s of de	emand	paging	g.							[04 N	M] CO	3	L5
	What is dynamic the above problem		ge allo	cation	proble	em? E	xplain o	liffere	nt strat	egies used	d to sol	ve	[10 N	[] CO	3	L5
4 I	Explain the follo a) File Attributes	wing.) Bela	dy's an	omaly	, (e) Acce	ss Met	hods				[10 N	[] CO	3	L5
5	Explain segment required for its	ntatior	n men	ory n						ware sup	port th	at is	[10 N	[] CO	3	L5
6(a)											[04 N	1] CO	2	L2		
	(b) "A cycle in the graph (RAG) is a necessary, but not a sufficient condition for the [06 M] existence of deadlock" – Justify									M] CO	2	L5				
7	· · · · · · · · · · · · · · · · · · ·															
				Alloc	ation			M	ax							
			A	В	С	D	A	В	С	D						
		P0	0	1	1	0	0	2	1	0						
	-	P1 P2	1	3	<u>3</u>	5	3	<u>6</u> <u>3</u>	5	6						
	-	P3	0	6	3	2	0	6	5	2						
		P4	0	0	1	4	0	6	8	6						
	Available															
							A	<u>B</u>	C	D						
							1	5	2	0						
(a) '	(a) What is the content of the need matrix. [03									[03N	1] CO	3	L1			
(b) l	(b) Use the safety algorithm to test if the system is in a safe state. [03M]								1] CO	3	L3					
	If the system is in Why not? Use the a. P1 request b. P1 request	e safet sts (2,1	ty algo 1,1,0)							, why or			[04N	1] CO	2	L3

	Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1:	Describe different functions, structures and design issues associated with OS.	2	0	0	2	0	1	1	0	0	0	0	2
CO2:	Demonstrate various process management concepts including scheduling, synchronizing and deadlocks.	2	2	0	2	0	0	0	0	0	0	0	2
CO3:	Explain memory management techniques like Paging, Segmentation	2	0	0	2	0	1	0	0	0	0	0	0
CO4:	Explain the management techniques of file systems, protection and security.	2	0	0	2	0	0	0	0	0	0	0	0
CO5:	Demonstrate various secondary storage concepts including disk scheluding methods	2	0	0	2	0	0	0	0	0	0	0	0
CO6:	Explain the functionality with Linux operating system as case study.	2	0	0	2	0	0	0	0	0	0	0	0

Cognitive level	KEYWORDS
L1	List, define, tell, describe, identify, show, label, collect, examine, tabulate, quote, name, who, when, where, etc.
L2	summarize, describe, interpret, contrast, predict, associate, distinguish, estimate, differentiate, discuss, extend
L3	Apply, demonstrate, calculate, complete, illustrate, show, solve, examine, modify, relate, change, classify, experiment, discover.
L4	Analyze, separate, order, explain, connect, classify, arrange, divide, compare, select, explain, infer.
L5	Assess, decide, rank, grade, test, measure, recommend, convince, select, judge, explain, discriminate, support, conclude, compare, summarize.

PO1 - Engineering knowledge; PO2 - Problem analysis; PO3 - Design/development of solutions; PO4 - Conduct investigations of complex problems; PO5 - Modern tool usage; PO6 - The Engineer and society; PO7-Environment and sustainability; PO8 - Ethics; PO9 - Individual and team work; PO10 - Communication; PO11 - Project management and finance; PO12 - Life-long learning

Inlernal Assessment Test II - Nov 2016 SUB: OPERATING SYSTEMS CODE: 10C353 SEM: V DURATION: 90 mins BRANCH: 15E MAX MARKS: 50 10 LRU 5 6 1 2 3 2 L 3 6 (2 marks) No: of page faults: 15 optimal

No: of Page faults = 11.

(2marks)

Diagram

5 Solutions

Ognamic Storage allocation (4 marks)

(1 marks)

(5 marks)

Page faults handling steps
6 Steps 3 marks
diagrams 3 marks

Demand paging
explanation a marks
- Diagram a marks

4 @ File attributes

B attributes 3 marks

Belady's anomaly

emplanation with egs 4 marks

show the mo of page faults for

different frame numbers (say 3 & 4)

Sequential access a marky Direct access 1 marks Definition With diagram 2 marks

Hardware diagram 2 marks

emplanation 2 marks

eq diagram 2 marks

Emplanation 2 marks

Emplanation 2 marks

6. @ 4 necessary Conditions for deadlock.
4 marks.

Bacycle represents deadlock.

explanation with eq diagram 3 marks

Topcle down is not sufficient to

represent deadlock.

emplanation Wilt eg diagram - 3 marks.

4 O NEED MATRIX

A	В	C)
Po O	1	0	0
P1 2 P2 1 P3 0	400	202	(
Par O	6	7	2

AVAILABLE

1 5 2 0.

3 @ P1 requests (2,1,1,0) As more than availability request can't. granted. (b) P, requests (0,2,1,0) Max CD A A B 0 / 3 1 4 4 10 3 2 P2 1 3 6 5 0 6 3 2 0 1 4 NEED AVAILABLE 3 (0. ABLD Po 0 1 0 0 P, 221 1 P2 1 0 0 0 0 2 9 7 0 6 NA

$$(P_2)$$
 $NA = 1 = 10 = 52$
 $1 = 3 = 65$
 $2 = 13 = 7$

Safe sequence $P_0, P_3, P_2, P_4, P_1 >$

System in safe state after granting the request also.

So the request from P, (0, 2, 1, 0)

can be granted.