CMR INSTITUTE OF TECHNOLOGY			USN							CMR INSTITUTE OF	
Internal Assessment Test - II											
Sub: Formal Language and Automata Theory Code:									10CS56 CSE &		
Date:	: 09 / 11 / 2016 Duration: 90 mins Max Marks: 50 Sem: V Branch:										
		A	nswer Any	FIVE FULL Q	uestio	ns					
								Marks	OBE		
										RBT	
	languages. (i) L={ ww ^r (ii) L={ a ⁿ b ⁿ c ^m	w is in $(a+b)$ * $ n \ge 0, m > 0 \}$ $ k = 2m+n, n, n$	}	esign a CFG	for tl	ne follow	ving	[1+9]	CO2	L3	
2 (a) Define the following terms: (i) Derivation tree (ii) Sentential form (iii) Yield of a tree (iv) Ambiguous grammar (v) Leftmost derivation							CO2	L1			
(b)	(b) Show that the following grammar is ambiguous for the string s=ibtibtaea. S⇒iCtS iCtSeS a C⇒b								CO2	L1	
Consider the following grammar. Generate LMD, RMD and derivation tree(Both LMD and RMD) for the string W=badbabaadb S⇒AaAb BbBa A⇒aAb bAB d B⇒aB bBa ∈						CO2	L2				
Design a PDA to accept the language L={a¹b²¹ n≥1} by final state. [5+5] Also show the moves made by PDA(Instantaneous description) for the string W=aabbbb.								CO3	L3		
5 (a)	Explain the	working model	of a PDA	with a diagra	m.			[5]	CO3	L1	
(b)									CO3	L2	
6 (a)	Define the fo	ollowing terms ing Symbol	:	eachable Sym	nbol	(iii) U	Unit	[4]	CO2	L2	

(b)	Consider the following grammar	[3+3]	CO2	L2
	S→ABC BaB A→aA BaC aaa B→bBb a D C→CA AC			
	D ⇒ ∈			
	Eliminate ∈-productions and useless symbols.			
7	What is Chomsky Normal Form? Convert the following grammar to CNF.	[10]	CO2	L2
	$E \rightarrow T*E \mid T - E \mid T$ $T \rightarrow T + F \mid F$ $F \rightarrow a \mid (E)$			
8	Design PDA for the following languages. Is it DPDA or NPDA?	[5+5]	CO3	L3
	(i) L={ wcw^R w is in {0+1}*, w^R is the reverse of w}			
	$(ii)L = \{a^nb^mc^{m+n} n,m \ge 0\}$			

	Course Outcomes	P O 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	P O 9	PO 10	PO 11	PO 12
CO 1:	Apply techniqu es of induction , Deductio n, Contradi ction to formally prove simple theorems .	1	1	0	0	0	1	0	0	0	0	0	0
CO 2:	Construc t and apply grammar s for simple language s – Regular, CFG.	0	1	2	1	1	1	0	0	0	1	0	1
CO 3:	Model and solve simple classes of problems - Regular, CFG, RE class of problems	0	1	2	1	1	1	0	0	0	1	0	1

CO 4:	Apply pumping lemma to determin e if a language is regular, CFG or neither.	0	1	0	1	0	0	0	0	0	0	0	0
CO 5:	Model and Construc t turing machine as a solution for simple problems	0	1	2	2	1	1	0	0	0	0	0	0

Cognitive level	KEYWORDS
L1	List, define, tell, describe, identify, show, label, collect, examine, tabulate, quote, name, who, when, where, etc.
L2	summarize, describe, interpret, contrast, predict, associate, distinguish, estimate, differentiate, discuss, extend
L3	Apply, demonstrate, calculate, complete, illustrate, show, solve, examine, modify, relate, change, classify, experiment, discover.
L4	Analyze, separate, order, explain, connect, classify, arrange, divide, compare, select, explain, infer.
L5	Assess, decide, rank, grade, test, measure, recommend, convince, select, judge, explain, discriminate, support, conclude, compare, summarize.

IATZ - FLAT

1) Define - I mark.

i) S -> aa S.b | aab - 2 marks Grammar, I mark correct termination.

") S -> "('S') [{ 'S'} | E'S'] 'ES | E - - "

iii) S -> a Sc | a Sic Si -> bsic | bc

2) a) 1×5 marks b) 1×4 marks +1 對 if all convect.

Tree can be same for both LMD 8 RMD. Some drew ade nodep at diff Levels to show order, that is as well. fine _ 4 marks

____ 3 marks, 3 marks RMD. TWD. S => AaAb => bad babaadb == S=) AaAb =) Aa(d) b => (6 AB) aAb =)(bAB) aAdb = b (aAb) BaAb

ID must be on the PDA constructed.

6) à

1st construction, tree or derivation.

2nd Construction, tree or derivation.

: Grammar is ambigious.

___ 4 marks.

b) Eliminate useless symbols first.

C useless because no termination.

Remove C.

Now A useless, because S -> ABC got removed because of C. Now, no both from S to A.

:. Grammar becomes:

S-> BaB

B -> bBb a D

D-> E.

_____ 3 marks.

Now eliminate rule D-> E.

: Sin BaB

B -> 686 a E

Eliminate rule B→ E

: S -> BaB | aB | Ba | a

B -> bBb a | bb/

____ 3 marks.

3 2 1- 5 7) CNF defination + Explain 2 marks. E A SA Y Y Z 7 STAKE X S-) aAa AB State A BS aBa E 2 24 38 C-1 B-) aB/E 1246-3 XXV A CA 50-> S Start S -> aAa AB S-> VaAYa AB Fix A -> BS | aBa | E A -> BS |VaBVa | E term. B -> aB | E B -> VaB E. Fix Exproductions 5,->5 S-> S Va-)a Ya-> a S -> Va X, AB S->VaXI ABE X, -> AVa X, -> AVa A -> BS Vaxa E E- prod. A->BS K2 -> BVa · VaXz B -> VaB E X2-> BVa B-> VaB 5-> A | B | E XI -> Va $A \rightarrow S$

X2 -> Va

 $S_0 \rightarrow S \mid \mathcal{E}$ $V_a \rightarrow a$:. 5,→ S E Va-) a S-VaX, AB S -> VaX, AB A B fix unit- BS Vaxa XI -> AVala) VaB and A -> BS | VaX2 |S X, -> AVa a X2->BVa a A -> BS VaX2 B -> VaB a VaX, AB BS Vaxa VaB a X2-> BVa a. The salara line B→VaB a; - 7 marks Very few have got it correct to the end. Full marks if all 5 requirements have been attempted . There is dependency cycle S->A->S But, S must be constructed first .: Fix SANDA FIRE MAN ANDS. S-) A first. 1,6-71 0,0-78 1) (2 (5) E, E, E Whenever there is E, it is non-deterministic.

